Bài 2.1: Khoảng cách từ điểm đến mặt phẳng

AH
17 tháng 2 2021 lúc 16:51

Lời giải:

$\overrightarrow{AB}=(-1,-2,3)$

Vì $(P)$ chứa $A,B$ nên nếu $(a,b,c)$ là VTPT của $(P)$ thì:

$-a-2b+3c=0$. Thay các giá trị $a,b,c$ của 4 đáp án trong bài ta thấy chỉ đáp án A thỏa mãn 

Bình luận (0)
AH
17 tháng 2 2021 lúc 16:59

Lời giải:

(cách chi tiết)

Gọi PTMP $(P)$ là $ax+by+cz+d=0$. Do $A,B\in (P)$ nên:

$a+d=0$ và $-2b+3c+d=0(1)$

\(d(C,(P))=\frac{|a+b+c+d|}{\sqrt{a^2+b^2+c^2}}=\frac{2}{\sqrt{3}}\)

\(\Rightarrow (a+b+c+d)^2=\frac{4}{3}(a^2+b^2+c^2)\)

Kết hợp với $(1)$ suy ra $(b+c)^2=\frac{4}{3}[(3c-2b)^2+b^2+c^2]$

$\Leftrightarrow 17b^2-54bc+37c^2=0$

$\Rightarrow b=\frac{37}{17}c$ hoặc $b=c$

$a=3c-2b=\frac{-23}{17}c$ hoặc $a=c$ (tương ứng)

$d=\frac{23}{17}c$ hoặc $d=-c$ (tương ứng)

Đến đây thay vào MTPT $(P)$ ta thu được đáp án A.

 

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
TM
Xem chi tiết
NC
Xem chi tiết
NB
Xem chi tiết
PA
Xem chi tiết
VV
Xem chi tiết
HD
Xem chi tiết
LK
Xem chi tiết