\(P=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}}\\ P=\dfrac{a+\sqrt{a}-2-a+\sqrt{a}+2}{\sqrt{a}}=\dfrac{2\sqrt{a}}{\sqrt{a}}=2\\ M=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ M=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}=2\\ P=\dfrac{1+x}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{1+\sqrt{x}}=\dfrac{x+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ P=\dfrac{1+\sqrt{x}+x-\sqrt{x}}{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)}\cdot\dfrac{\sqrt{x}+1}{1+x}\\ P=\dfrac{x+1}{\left(1-\sqrt{x}\right)^2\left(1+x\right)}=\dfrac{1}{\left(1-\sqrt{x}\right)^2}\)