\(a,A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1-\sqrt{x}}\\ A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\\ b,A=\dfrac{1+\dfrac{2}{3}}{\dfrac{2}{3}\left(1-\dfrac{2}{3}\right)}=\dfrac{5}{3}:\left(\dfrac{2}{3}\cdot\dfrac{1}{3}\right)=\dfrac{5}{3}\cdot\dfrac{9}{2}=\dfrac{15}{2}\)