\(a,\Leftrightarrow\left(3x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(4x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\\ c,\Leftrightarrow\left(x-4\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{2}\end{matrix}\right.\\ d,\Leftrightarrow2x\left(x^2+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-4\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=0\)
a) \(\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=2\end{matrix}\right.\)
b) \(\Leftrightarrow4x\left(x-3\right)-2\left(x-3\right)=0\\ \Leftrightarrow\left(4x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)
c) \(\Leftrightarrow2x\left(x-4\right)+\left(x-4\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=4\end{matrix}\right.\)
d) \(\Leftrightarrow2x\left(x^2+2\right)=0\\ \Leftrightarrow x=0\)(vì x2+2>0)
a) 3x(x-2) - (x-2) = 0
(x-2) (3x-1)=0
TH1: x-2 = 0; x=2
TH2: 3x-1=0; 3x=1;x=1/3
a)\(3x\left(x-2\right)-x+2=0\Rightarrow\left(x-2\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
b)\(4x\left(x-3\right)-2x+6=0\Rightarrow4x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Rightarrow\left(2\left(2x-1\right)\left(x-3\right)\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)
c)\(2x\left(x-4\right)+x-4=0\Rightarrow\left(2x+1\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=4\end{matrix}\right.\)
d)\(2x^3+4x=0\Rightarrow2x\left(x^2+2\right)=0\)
\(\Rightarrow x=0\) (vì \(x^2+2>0)\)