a) \(P=\left(\dfrac{3x+3}{x-9}-\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{3-\sqrt{x}}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\left(đk:x\ge0,x\ne9,x\ne1\right)\)
\(=\dfrac{3x+3-2\sqrt{x}\left(\sqrt{x}-3\right)-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}+3}\)
b) \(P=\dfrac{3}{\sqrt{x}+3}=\dfrac{3}{\sqrt{4}+3}=\dfrac{3}{2+3}=\dfrac{3}{5}\)