H24
H24
13 tháng 6 2021 lúc 19:42

`1a)A=(sqrt{99}-sqrt{18}-sqrt{11}).sqrt{11}+3sqrt{22}`

`=(3sqrt{11}-sqrt{11}-3sqrt2).sqrt{11}+3sqrt{22}`

`=(2sqrt{11}-3sqrt{2}).sqrt{11}+3sqrt{22}`

`=2.11-3sqrt{22}+3sqrt{22}`

`=22`

`b)B=sqrt{4+2sqrt3}+sqrt{4-2sqrt3}`

`=sqrt{3+2sqrt+1}+sqrt{3-2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}+sqrt{(sqrt3-1)^2}`

`=sqrt3+1+sqrt3-1`

`=2sqrt3`

`c)C=5/(sqrt7+sqrt2)-(7-sqrt7)/(sqrt7-1)+6sqrt{1/2}`

`=((sqrt7-sqrt2)(sqrt7+sqrt2))/(sqrt7+sqrt2)-(sqrt7(sqrt7-1))/(sqrt7-1)+3.2.sqrt{1/2}`

`=sqrt7-sqrt2-sqrt7+3sqrt2`

`=2sqrt2`

`2)a)sqrt{2x-1}=sqrt{x-1}`

`đk:x>=1`

`pt<=>2x-1=x-1`

`<=>x=0(l)`

Vậy pt vô nghiệm

`b)sqrt{4-x^2}-x+2=0`

`đk:-2<=x<=2`

`pt<=>\sqrt{(2-x)(2+x)}=x-2`

`<=>4-x^2=x^2-4x+4`

`<=>2x^2-4x=0`

`<=>x(2x-4)=0`

`<=>` \(\left[ \begin{array}{l}x=2\\x=0\end{array} \right.\) 

Vậy `S={0,2}`

Bình luận (0)
TQ
13 tháng 6 2021 lúc 19:43

Bài \(1\)

\(a\)\(A=\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right).\sqrt{11}+3\sqrt{22}\)

\(A=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(A=3.11-3\sqrt{22}-11+3\sqrt{22}\)

\(A=22\)

\(b\))\(B=\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(B=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}+\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}\)

\(B=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(B=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\)

\(B=2\sqrt{3}\)

\(c\))\(C=\dfrac{5}{\sqrt{7}+\sqrt{2}}-\dfrac{7-\sqrt{7}}{\sqrt{7}-1}+6\sqrt{\dfrac{1}{2}}\)

\(C=\dfrac{5\left(\sqrt{7}-\sqrt{2}\right)}{5}-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\left(\sqrt{7}-1\right)}+\sqrt{\dfrac{36}{2}}\)

\(C=\sqrt{7}-\sqrt{2}-\sqrt{7}+3\sqrt{2}\)

\(C=2\sqrt{2}\)

Bình luận (0)
TQ
13 tháng 6 2021 lúc 19:51

\(a\)) ĐK \(x>-1\)

\(\sqrt{2x-1}=\sqrt{x+1}\)

<=>\(2x-1=x+1\)

<=>\(x=2\)\(\left(TM\right)\)

Vậy \(x=2\)

\(b\)) ĐK \(x\) ≤ 2

\(\sqrt{4-x^2}-x+2=0\)

<=> \(\sqrt{4-x^2}=x-2\)

<=>\(4-x^2=x^2-4x+4\)

<=>\(2x^2-4x=0\)

<=>\(2x\left(x-2\right)=0\)

<=>\(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{0;2\right\}\)

Bình luận (1)
MY
13 tháng 6 2021 lúc 19:53

a, \(A=\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{22}\)

\(=22-3\sqrt{22}+3\sqrt{22}=22\)

b, \(B=\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(B=\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}\)

\(B=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(B=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

c,\(C=\dfrac{5}{\sqrt{7}+\sqrt{2}}-\dfrac{7-\sqrt{7}}{\sqrt{7}-1}+6\sqrt{\dfrac{1}{2}}\)

\(C=\dfrac{5\left(\sqrt{7}-\sqrt{2}\right)}{7-2}-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+3\sqrt{2}\)

\(C=\sqrt{7}-\sqrt{2}-\sqrt{7}+3\sqrt{2}=2\sqrt{2}\)

bài 2:

a, \(\sqrt{2x-1}=\sqrt{x+1}\left(x\ge\dfrac{1}{2}\right)\)

\(=>2x-1=x+1< =>x=2\left(TM\right)\)

vậy x=2

b, \(\sqrt{4-x^2}-x+2=0\left(-2\le x\le2,\right)\)

\(=>\sqrt{4-x^2}=x-2=>4-x^2=x^2-4x+4\)

\(< =>-2x^2+4x=0< =>-2x\left(x-2\right)=0\)

\(=>\left[{}\begin{matrix}x=0\left(loai\right)\\x=2\left(TM\right)\end{matrix}\right.\) vậy...

 

Bình luận (3)

Các câu hỏi tương tự
XD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
PB
Xem chi tiết
gh
Xem chi tiết
LL
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết