Cho hai đường thẳng AB và CD cắt nhau tại O. Tìm tập hợp các điểm cách đều hai đường thẳng AB và CD ?
Cho hai đường thẳng AB và CD cắt nhau tại O. Tìm tập hợp các điểm cách đều hai đường thẳng AB và CD ?
Để vẽ đường phân giác của góc xOy có đỉnh O nằm ngoài tờ giấy, bạn Minh đã vẽ các điểm A, B như trên hình 9. Đường thẳng AB có đường phân giác của góc xOy hay không ? Vì sao ?
Vì AD=AE
nên A nằm trên đường phân giác của góc xOy
Vì BM=BN
nên B nằm trên đường phân giác của góc xOy
=>AB là phân giác của góc xOy
Trả lời bởi Nguyễn Lê Phước ThịnhCho góc xOy bằng \(60^0\), điểm M nằm trong góc đó và cùng cách Ox, Oy một khoảng cách bằng 2cm. Khi đó đoạn thẳng OM bằng :
(A) 2cm (B) 3cm (C) 4cm (D) 5cm
Hãy chọn phương án đúng ?
Cho điểm A nằm trong góc vuông xOy. Gọi M, N lần lượt là chân đường vuông góc kẻ từ A đến Ox, Oy. Biết AM = AN = 3cm. Khi đó :
(A) OM = ON > 3cm (B) OM = ON < 3cm
(C) OM = ON = 3cm (D) \(OM\ne ON\)
Hãy chọn phương án đúng ?
Cho góc đỉnh O khác góc bẹt
a) Từ một điểm M trên tia phân giác của góc O, kẻ các đường vuông góc MA, MB đến hai cạnh của góc này. Chứng minh rằng \(AB\perp OM\)
b) Trên hai cạnh của góc O lấy hai điểm C và D, sao cho OC = OD. Hai đường thẳng lần lượt vuông góc với hai cạnh của góc O tại C và D cắt nhau ở E. Chứng minh OE là tia phân giác của góc O.
a) Gọi H là giao điểm của AB và OM. Xét hai tam giác vuông AOM và BOM. Ta có cạnh huyền OM chung, MA = MB (vì M thuộc tia phân giác của góc O). Vậy ∆AOM = ∆BOM. Suy ra OA = OB. Từ đó có ∆AOH = ∆BOH (c.g.c). Suy ra ˆAHO=ˆAHB=90∘AHO^=AHB^=90∘, tức là OM⊥ABOM⊥AB
b) Để chứng minh OE là tia phân giác của góc O, ta cần chứng minh hai tam giác vuông COE và DOE bằng nhau. Hai tam giác này có cạnh huyền OE chung và OC = OD (giả thiết) nên chúng bằng nhau. Suy ra ˆEOC=ˆEODEOC^=EOD^ hay OE là tia phân giác của góc O.
Trả lời bởi lam phungCho tam giác cân ABC, AB = AC. Trên các cạnh AB, AC lần lượt lấy hai điểm P, Q sao cho AP = AQ. Hai đoạn thẳng Cp, BQ cắt nhau tại O. Chứng minh rằng :
a) Tam giác OBC là tam giác cân
b) Điểm O cách đều hai cạnh AB, AC
c) AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó
a: Xét ΔPBC và ΔQCB có
PB=QC
\(\widehat{PBC}=\widehat{QCB}\)
BC chung
Do đo: ΔPBC=ΔQCB
Suy ra: \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
b: OB=OC
AB=AC
Do đó: AO là đường trung trực của BC
Ta có: ΔABC cân tại A
mà AO là đường trung trực
nên AO là đường phân giác
hay O cách đều hai cạnh AB và AC
Trả lời bởi Nguyễn Lê Phước ThịnhCho hai đường thẳng song song a, b và một cát tuyến c. Hai tia phân giác của một cặp góc trong cùng phía cắt nhau tại I. Chứng minh rằng I cách đều ba đường thẳng a, b, c.
Gọi A, B, C lần lượt là chân đường vuông góc kẻ từ I đến a, b, c.
Xét hai góc trong cùng phía E và F.
Do I thuộc tia phân giác của góc E nên IA = IC(1)
Do I thuộc tia phân giác của góc F nên IC = IB(2)
Từ (1) và (2) suy ra IA = IB = IC
hay I cách đều ba đường thẳng a, b, c.
Trả lời bởi Nguyễn Lê Phước Thịnh
Nếu điểm M nằm trong góc AOD thì kẻ MH vuông góc với OA, MK vuông góc với OD
Xét ΔMHO vuông tại H và ΔMKO vuông tại K có
MO chung
MH=MK
Do đó: ΔMHO=ΔMKO
Suy ra: \(\widehat{MOH}=\widehat{MOK}\)
=>M nằm trên tia phân giác của góc AOD
Vì ΔMHO=ΔMKO nên MH=MK
=>Tập hợp điểm M cách đều OA và OD là phân giác Ox của góc AOD
Tương tự M nằm trong các góc AOC, DOB, BOC thì tập hợp các điểm M là tia phân giác Oy, Oy’, Ox’.
Vậy tập hợp các điểm M cách đều hai đường thẳng AB và CD cắt nhau tại O là hai đường thẳng xx’ và yy’ là đường phân giác của các góc tạo bởi hai đường thẳng AB và CD.
Trả lời bởi Nguyễn Lê Phước Thịnh