Bài 3: Một số phương trình lượng giác thường gặp

SK
Hướng dẫn giải Thảo luận (1)

sin2x - sinx = 0 ⇔ sinx(sinx - 1) = 0

Th1. sinx=0 \(\Leftrightarrow\) x=kπ \(\left(k\in Z\right)\)

Th2.  sinx=1\(\Leftrightarrow\)  x= \(\dfrac{\text{π}}{2}\) + \(\text{k 2 π}\)\(\left(k\in Z\right)\)
Vậy phương trình có hai họ nghiệm là: 
\(x=k\pi\) và \(x=\dfrac{\pi}{2}+k2\pi\)  với \(\left(k\in Z\right)\)


 

 

Trả lời bởi Vương Khả Thiên Di
SK
Hướng dẫn giải Thảo luận (1)

a) Đặt t = cosx, t ∈ [-1 ; 1] ta được phương trình 2t2 - 3t + 1 = 0 ⇔ t ∈ {1 ; }.

Nghiệm của phương trình đã cho là các nghiệm của hai phương trình sau:

cosx = 1 ⇔ x = k2π và cosx = ⇔ x = + k2π.

Đáp số : x = k2π ; x = + k2π, k ∈ Z.

b) Ta có sin4x = 2sin2xcos2x (công thức nhân đôi), do đó phương trình đã cho tương đương với

2sin2x(1 + √2cos2x) = 0 ⇔


Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (1)

a) Đặt t = cos, t ∈ [-1 ; 1] thì phương trình trở thành

(1 - t2) - 2t + 2 = 0 ⇔ t2 + 2t -3 = 0 ⇔

Phương trình đã cho tương đương với

cos = 1 ⇔ = k2π ⇔ x = 4kπ, k ∈ Z.

b) Đặt t = sinx, t ∈ [-1 ; 1] thì phương trình trở thành

8(1 - t2) + 2t - 7 = 0 ⇔ 8t2 - 2t - 1 = 0 ⇔ t ∈ {}.

Các nghiệm của phương trình đã cho là nghiệm của hai phương trình sau :

Đáp số : x = + k2π; x = + k2π;

x = arcsin() + k2π; x = π - arcsin() + k2π, k ∈ Z.

c) Đặt t = tanx thì phương trình trở thành 2t2 + 3t + 1 = 0 ⇔ t ∈ {-1 ; }.

Vậy

d) Đặt t = tanx thì phương trình trở thành

t - + 1 = 0 ⇔ t2 + t - 2 = 0 ⇔ t ∈ {1 ; -2}.

Vậy



Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (1)

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0


Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (3)

a) cosx - √3sinx = √2 ⇔ cosx - tansinx = √2

⇔ coscosx - sinsinx = √2cos ⇔ cos(x + ) =

Trả lời bởi Phan Thùy Linh
SK
Hướng dẫn giải Thảo luận (1)

a) tan(2x + 1)tan(3x - 1) = 1 ⇔ frac{sin(2x + 1)sin(3x - 1)}{cos(2x + 1)cos(3x - 1)} = 1.

Với điều kiện cos(2x + 1)cos(3x - 1) ≠ 0 phương trình tương đương với

cos(2x + 1)cos(3x - 1) - sin(2x + 1)sin(3x - 1) = 0

⇔ cos(2x + 1 + 3x - 1) = 0 ⇔ 5x = frac{prod }{2} + k π ⇔ x = frac{prod }{10} + frac{kprod }{5}, k ∈ Z.

Cần chọn các k nguyên để x = frac{prod }{10} + frac{kprod }{5} không thỏa mãn điều kiện của phương trình (để loại bỏ). Điều này chỉ xảy ra trong các trường hợp sau:

(i) x = frac{prod }{10} + frac{kprod }{5} làm cho cos(2x + 1) = 0, tức là

cos[2(frac{prod }{10} + frac{kprod }{5}) + 1] = 0 ⇔ frac{(1 + 2k)prod }{5} + 1 = frac{prod }{2} + lπ, (l ∈ Z)

⇔ π(frac{2l + 1}{2} - frac{2k + 1}{5}) = 1 ⇔ π = frac{1}{(frac{2l + 1}{2} - frac{2k + 1}{5})}, suy ra π ∈ Q, vô lí.

Vì vậy không có k nguyên nào để x = frac{prod }{10} + frac{kprod }{5} làm cho cos(2x + 1) = 0.

(ii) x = frac{prod }{10} + frac{kprod }{5} làm cho cos(3x - 1) = 0. Tương tự (i),ta cũng thấy không có k nguyên nào để x = frac{prod }{10} + frac{kprod }{5} làm cho cos(3x - 1) = 0.

Vậy ∀ k ∈ Z, x = frac{prod }{10} + frac{kprod }{5} đều là nghiệm của phương trình đã cho.

b)Đặt t = tan x, phương trình trở thành

t + frac{t + 1}{1 - t}= 1 ⇔ -t2 + 3t = 0 (điều kiện t ≠ 1) ⇔ t = 0 hoặc t = 3 (thỏa mãn)

Vậy tan x = 0 ⇔ x = kπ

tan x = 3 ⇔ x = arctan 3 + kπ (k ∈ Z)



Trả lời bởi Phan Thùy Linh
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)