Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 3. Đường tiệm cận của đồ thị hàm số

QL
Hướng dẫn giải Thảo luận (1)

a) Ta có: \(M\left( {x;\frac{{2x + 1}}{x}} \right)\); \(H\left( {x;2} \right)\).

Do đó, \(MH = \sqrt {{{\left( {x - x} \right)}^2} + {{\left( {2 - \frac{{2x + 1}}{x}} \right)}^2}}  = \sqrt {{{\left( {\frac{{2x - 2x - 1}}{x}} \right)}^2}}  = \frac{1}{x}\) (do \(x > 0\))

b) Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x} = 0\). Do đó, khi \(x \to  + \infty \) thì \(MH \to 0\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{2x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2 - \frac{1}{x}}}{{1 - \frac{1}{x}}} = 2;\mathop {\lim }\limits_{x \to  - \infty } \frac{{2x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{2 - \frac{1}{x}}}{{1 - \frac{1}{x}}} = 2\).

Do đó, tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x - 1}}\) là \(y = 2\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\mathop {\lim }\limits_{t \to  + \infty } m\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } 15{e^{ - 0,012t}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{15}}{{{e^{0,012t}}}} = 0\)

Do đó, \(m\left( t \right) \to 0\) khi \(t \to  + \infty \).

Trong hình 1.18, khi \(t \to  + \infty \) thì m(t) càng gần trục hoành Ot (nhưng không chạm trục Ot).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có: \(M\left( {x;\frac{x}{{x - 1}}} \right);H\left( {1;\frac{x}{{x - 1}}} \right)\)

Do đó, \(MH = \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {\frac{x}{{x - 1}} - \frac{x}{{x - 1}}} \right)}^2}}  = x - 1\) (do \(x > 1\))

b) Khi khoảng cách MH dần đến 0 thì tung độ của điểm M dần ra xa vô tận về phía trên (tung độ điểm M tiến ra \( + \infty \)).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{2x + 1}}{{x - 4}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2 + \frac{1}{x}}}{{1 - \frac{4}{x}}} = 2;\mathop {\lim }\limits_{x \to  - \infty } \frac{{2x + 1}}{{x - 4}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{2 + \frac{1}{x}}}{{1 - \frac{4}{x}}} = 2\) nên tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\) là \(y = 2\).

Lại có: \(\mathop {\lim }\limits_{x \to {4^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} \frac{{2x + 1}}{{x - 4}} =  + \infty ;\mathop {\lim }\limits_{x \to {4^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x + 1}}{{x - 4}} =  - \infty \) nên tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\) đường thẳng \(x = 4\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\mathop {\lim }\limits_{p \to {{100}^ - }} C\left( p \right) = \mathop {\lim }\limits_{p \to {{100}^ - }} \frac{{45p}}{{100 - p}} =  + \infty \) nên tiệm cận đứng của đồ thị hàm số C(p) là \(p = 100\).

Ý nghĩa của đường tiệm cận là: Không thể loại bỏ hết loài tảo độc ra khỏi hồ nước dù chi phí là bao nhiêu.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Nhìn vào đồ thị ta thấy, khi \(x \to  + \infty \) thì khoảng cách MH tiến tới 0.

b) Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left[ {x - 1 + \frac{2}{{x + 1}} - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{{x + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{2}{x}}}{{1 + \frac{1}{x}}} = 0\)

Tính chất này được thể hiện trong Hình 1.24 là: Khoảng cách từ điểm M của đồ thị hàm số (C) đến đường thẳng \(y = x - 1\) tiến đến 0 khi \(x \to  + \infty \).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 4x + 2}}{{1 - x}} =  + \infty \); \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 4x + 2}}{{1 - x}} =  - \infty \)

Vậy tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) là đường thẳng \(x = 1\)

Ta có: \(y = f\left( x \right) = \frac{{{x^2} - 4x + 2}}{{1 - x}} =  - x + 3 - \frac{1}{{1 - x}}\)

Do đó, \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( { - x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 1}}{{1 - x}} = 0\), \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - \left( { - x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 1}}{{1 - x}} = 0\)

Vậy tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\) là đường thẳng \(y =  - x + 3\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 2\); \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2\); \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) =  - \infty \); \(\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) =  - \infty \)

b) Do đó, tiệm cận đứng của đồ thị hàm số là \(x = 1;x =  - 1\).

Tiệm cận ngang của đồ thị hàm số là \(y = 2\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 3} \right) = 4\)

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 3} \right) = 4\)

Do đó, đường thẳng \(x = 1\) không là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 3}}{{x - 1}}\).

Trả lời bởi Hà Quang Minh