Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 3. Đường tiệm cận của đồ thị hàm số

QL

Giải bài toán trong tình huống mở đầu.

Giả sử khối lượng còn lại của một chất phóng xạ (gam) sau t ngày phân rã được cho bởi hàm số \(m\left( t \right) = 15{e^{ - 0,012t}}\). Khối lượng m(t) thay đổi ra sao khi \(t \to  + \infty \)? Điều này thể hiện trên Hình 1.18 như thế nào?

HM
26 tháng 3 2024 lúc 4:40

Ta có: \(\mathop {\lim }\limits_{t \to  + \infty } m\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } 15{e^{ - 0,012t}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{15}}{{{e^{0,012t}}}} = 0\)

Do đó, \(m\left( t \right) \to 0\) khi \(t \to  + \infty \).

Trong hình 1.18, khi \(t \to  + \infty \) thì m(t) càng gần trục hoành Ot (nhưng không chạm trục Ot).

Bình luận (0)