Cho hàm số \(y = f\left( x \right) = \frac{x}{{x - 1}}\) có đồ thị (C). Với \(x > 1\), xét điểm M (x; f(x)) thuộc (C). Gọi H là hình chiếu vuông góc của M trên đường thẳng \(x = 1\) (H.1.22).
a) Tính khoảng cách MH.
b) Khi M thay đổi trên (C) sao cho khoảng cách MH dần đến 0, có nhận xét gì về tung độ của điểm M?
a) Ta có: \(M\left( {x;\frac{x}{{x - 1}}} \right);H\left( {1;\frac{x}{{x - 1}}} \right)\)
Do đó, \(MH = \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {\frac{x}{{x - 1}} - \frac{x}{{x - 1}}} \right)}^2}} = x - 1\) (do \(x > 1\))
b) Khi khoảng cách MH dần đến 0 thì tung độ của điểm M dần ra xa vô tận về phía trên (tung độ điểm M tiến ra \( + \infty \)).