Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 - \frac{1}{x}}}{{1 - \frac{1}{x}}} = 2;\mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 - \frac{1}{x}}}{{1 - \frac{1}{x}}} = 2\).
Do đó, tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x - 1}}\) là \(y = 2\).
Đúng 0
Bình luận (0)