Bài 1: Nguyên hàm

SK

Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số : \(f\left(x\right)=\dfrac{1}{1+\sin x}?\)

a) \(F\left(x\right)=1-\cos\left(\dfrac{\pi}{2}+\dfrac{\pi}{4}\right)\)

b) \(G\left(x\right)=2\tan\dfrac{x}{2}\)

c) \(H\left(x\right)=\ln\left(1+\sin x\right)\)

d) \(K\left(x\right)=2\left(1-\dfrac{1}{1+\tan\dfrac{x}{2}}\right)\)

GT
4 tháng 5 2017 lúc 17:10

Để kiểm tra một hàm F(x) có phải là một nguyên hàm của f(x) không thì ta chỉ cần kiểm tra F'(x) có bằng f(x) không?

a) \(F\left(x\right)\) là hằng số nên \(F'\left(x\right)=0\ne f\left(x\right)\)

b) \(G'\left(x\right)=2.\dfrac{1}{2}.\dfrac{1}{\cos^2x}=1+\tan^2x\)

c) \(H'\left(x\right)=\dfrac{\cos x}{1+\sin x}\)

d) \(K'\left(x\right)=-2.\dfrac{-\left(\dfrac{1}{2}.\dfrac{1}{\cos^2\dfrac{x}{2}}\right)}{\left(1+\tan\dfrac{x}{2}\right)^2}=\dfrac{\dfrac{1}{\cos^2\dfrac{x}{2}}}{\left(\dfrac{\cos\dfrac{x}{2}+\sin\dfrac{x}{2}}{\cos\dfrac{x}{2}}\right)^2}\)

\(=\dfrac{1}{\left(\cos\dfrac{x}{2}+\sin\dfrac{x}{2}\right)^2}=\dfrac{1}{1+2\cos\dfrac{x}{2}\sin\dfrac{x}{2}}\)

\(=\dfrac{1}{1+\sin x}\)

Vậy hàm số K(x) là một nguyên hàm của f(x).

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
VQ
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết