§1. Đại cương về phương trình

SK
Hướng dẫn giải Thảo luận (1)

a) 3x = 2 ⇔ x = ;

2x =3 ⇔ x = .

Cộng các vế tương ứng của hai phương trình ta được 5x =5 ⇔ x = 1

Tập nghiệm của phương trình mới nhận sau phép cộng khác với các tập nghiệm của phương trình đã cho ban đầu. Vậy phương trình có được do cộng các vế tương ứng của hai phương trình đã cho không tương đương với phương trình nào.

b) Phương trình này cũng không phải là phương trình hệ quả của một trong hai phương trình. Bởi vì nghiệm của một trong hai phương trình đã cho không là nghiệm của phương trình mới.

Trả lời bởi Hiiiii~
SK
Hướng dẫn giải Thảo luận (1)

a) Nhân các vế tương ứng của hai phương trình ta được

12x2 = 20 ⇔ x2 = = ⇔ x= ±.

Phương tình này không tương đương với phương trình nào trong các phương trình đã cho.

Vì 4x = 5 ⇔ x = ≠ ±

Trong khi 3x = 4 ⇔ x = ≠ ±

b) Phương trình mới cũng không là phương trình hệ quả của một phương trình nào đã cho.

 

Trả lời bởi Hiiiii~
SK
Hướng dẫn giải Thảo luận (1)

a) ĐKXĐ: x ≤ 3.

+x = + 1 ⇔ x = 1. Tập nghiệm S = {1}.

b) ĐKXĐ: x = 2.

Giá trị x = 2 nghiệm đúng phương trình. Tập nghiệm S = {2}.

c) ĐKXĐ: x > 1.

= 0

=> x = 3 (nhận vì thỏa mãn ĐKXĐ)

x = -3 (loại vì không thỏa mãn ĐKXĐ).

Tập nghiệm S = {3}.

d) xác định với x ≤ 1, xác định với x ≥ 2.

Không có giá trị nào của x nghiệm đúng phương trình.

Do đó phương trình vô nghiệm.


Trả lời bởi Hiiiii~
SK
Hướng dẫn giải Thảo luận (1)

a) \(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x+\dfrac{x+5}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x=0\)

b) \(2x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x\left(x-1\right)+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}-x\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x\left(x-1\right)}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x^2+x}{x-1}\)

\(\Leftrightarrow x^2-x+3=3x-x^2+x\) ( điều kiện \(x\ne1\) )

\(\Leftrightarrow2x^2-5x+3=0\)

\(\Delta=b^2-4ac\)

\(\Delta=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=1\left(loại\right)\end{matrix}\right.\)

Vậy \(x=\dfrac{3}{2}\)

c) \(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\)

\(\Leftrightarrow x^2-4x-2=\sqrt{\left(x-2\right)^2}\) ( điều kiện \(x>2\) )

\(\Leftrightarrow x^2-4x-2=x-2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\end{matrix}\right.\)

Vậy \(x=5\)

d) \(\dfrac{2x^2-x-3}{\sqrt{2x-3}}=\sqrt{2x-3}\)

\(\Leftrightarrow2x^2-x-3=\sqrt{\left(2x-3\right)^2}\) ( điều kiện \(x>\dfrac{3}{2}\) )

\(\Leftrightarrow2x^2-x-3=2x-3\)

\(\Leftrightarrow2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

Trả lời bởi Kuro Kazuya
SK
Hướng dẫn giải Thảo luận (1)

a) đkxđ: \(\left\{{}\begin{matrix}2x+1\ge0\\x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\ne0\end{matrix}\right.\)
b) đkxđ: \(2x^2+1\ge0\) (luôn thỏa mãn \(\forall x\in R\) )
c) đkxđ: \(\left\{{}\begin{matrix}x-1>0\\x+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-3\end{matrix}\right.\) \(\Leftrightarrow x>1\)
d) đkxđ: \(\left\{{}\begin{matrix}x^2-4\ne0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm2\\x\ge-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ge-1\end{matrix}\right.\)

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (2)

a) \(x+2=0\Leftrightarrow x=-2\)
Phương trình: \(\dfrac{mx}{x+3}=3m-1\) (*) có đkxđ: \(x\ne-3\)
Vì cặp phương trình tương đương nên phương trình (*) có nghiệm là x = -2:
\(\dfrac{2m}{2+3}+3m-1=0\) \(\Leftrightarrow\dfrac{2m}{5}+3m=1\)\(\Leftrightarrow m\left(\dfrac{2}{5}+3\right)=1\)
\(\Leftrightarrow\dfrac{17}{5}m=1\) \(m=\dfrac{5}{17}\)
Vậy \(m=\dfrac{5}{17}\) thì hai phương trình tương đương.

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (2)

a) \(đkxđ:x\ge-1\)
\(\sqrt{x+1}+x=\sqrt{x+1}+2\Leftrightarrow x=2\left(tm\right)\).
b) đkxđ: \(\)\(\left\{{}\begin{matrix}3-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Thay x = 3 vào phương trình ta có:
\(3-\sqrt{3-3}=\sqrt{3-3}+3\Leftrightarrow3=3\left(tm\right)\)
Vậy x = 3 là nghiệm của phương trình.

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (3)

a) \(\dfrac{3x^2+1}{\sqrt{x-1}}=\dfrac{4}{\sqrt{x-1}}\)

ĐKXĐ: \(x>1\)

\(3x^2+1=4\)

\(3x^2=3\)

\(x^2=1\)

\(x=\pm1\)

=> Pt vô nghiệm

 

Trả lời bởi Nguyễn Quang Định
SK
Hướng dẫn giải Thảo luận (2)

a) \(3x-2=0\Leftrightarrow x=\dfrac{2}{3}\)

Thay \(x=\dfrac{2}{3}\)

\(\left(m+3\right)\)\(\dfrac{2}{3}-m+4=0\)

\(\dfrac{2}{3}m+2-m+4=0\)

\(\dfrac{-1}{3}m+6=0\)

\(\dfrac{-1}{3}m=-6\)

\(m=18\)

Trả lời bởi Nguyễn Quang Định