HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
em làm ở dưới thầy xem có đúng ko thầy
pt\(\Leftrightarrow x^2\left(1-y\right)+8x+7-y=0\) (1)
Ta có :\(\Delta\)(x)=\(-y^2+8y+9\)(do làm biếng nên làm ra denta luôn)
Để tồn tại MAX y thì PT (1) có ngiệm nên \(\Delta\ge0\) \(\Leftrightarrow-y^2+8y+9\ge0\)
\(\Leftrightarrow-y^2-y+9y+9\ge0\Leftrightarrow-y\left(y+1\right)+9\left(y+1\right)\ge0\)
\(\Leftrightarrow\left(y+1\right)\left(9-y\right)\ge0\)
Giải BPT ta được : \(-1\le y\le9\)
\(\Rightarrow\) Max y =9. Thay y=9 vào (1)\(\Rightarrow x=\dfrac{1}{2}\)
Vậy Max y=9\(\Leftrightarrow x=\dfrac{1}{2}\)
E={x/x\(\in\)N,\(\forall x\inƯ\left(36\right)\)}
Ok nha b.n!
câu c nhé
Gọi AB là quãng đường con thuyền đi và AC là chiều rộng con sông
Quãng đường AB là: \(3.\dfrac{1}{30}=\dfrac{1}{10}\left(km\right)\)
Chiều rộng bờ sông AC là :\(_{\sin B=\dfrac{AC}{AB}\Leftrightarrow AC=AB.\sin B=\dfrac{1}{10}\sin60^o}\) =\(\dfrac{\sqrt{3}}{20}\)(km)
Vậy chiều rộng con sông là \(\dfrac{\sqrt{3}}{20}\) km
P=\(\dfrac{10}{2x+\sqrt{x}+2}\) (x\(\ge0\) )
=\(\dfrac{10}{2\left(x+\dfrac{1}{2}\sqrt{x}+1\right)}=\dfrac{10}{2\left(x+2\dfrac{1}{4}\sqrt{x}+\dfrac{1}{16}+\dfrac{15}{16}\right)}\)
=\(\dfrac{10}{2\left(\left(\sqrt{x}\right)^2+2\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\right)+\dfrac{15}{8}}=\dfrac{10}{2\left(\sqrt{x}+\dfrac{1}{4}\right)^2+\dfrac{15}{8}}\)
Do \(2\left(\sqrt{x}+\dfrac{1}{4}\right)^2+\dfrac{15}{8}\ge\dfrac{15}{8}\) \(\Rightarrow\dfrac{10}{2\left(\sqrt{x}+\dfrac{1}{4}\right)^2+\dfrac{15}{8}}\le\dfrac{10}{\dfrac{15}{8}}=\dfrac{16}{3}\)
Vậy Max P= \(\dfrac{16}{3}\Leftrightarrow\sqrt{x}+\dfrac{1}{4}=0\Leftrightarrow\sqrt{x}=-\dfrac{1}{4}\) (vô lý)
\(\Rightarrow Ko\) tồn tại Max P
Ta có :
A=\(\sqrt{12+6\sqrt{3}}+\sqrt{12-6\sqrt{3}}\)
=\(\sqrt{9+6\sqrt{3}+3}+\sqrt{9-6\sqrt{3+3}}\)
=\(\sqrt{3^2+2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{3^2-2.3\sqrt{3}+\left(\sqrt{3}\right)^2}\)
=\(\sqrt{\left(3+\sqrt{3}\right)^2}+\sqrt{\left(3-\sqrt{3}\right)^2}\)
=\(3+\sqrt{3}+3-\sqrt{3}=6\)
Vậy A =6