HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho x,y,z >0 thỏa mãn x ≥ z. Cmr:
\(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}\ge\frac{5}{2}\)
chứng minh rằng nếu n+1và 2n+1 dều là các số chính phương thì n là bội của 24
cho x,y,z,t thỏa mãn xyzt=1. Cmr:
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+xt\right)}+\frac{1}{z^3\left(xt+yt+yz\right)}+\frac{1}{t^3\left(xy+yz+xz\right)}\ge\frac{3}{4}\)
giải phương trình nghiệm nguyên
\(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}=3\)
cho a,b,c> 0 thỏa mãn a+b+c = abc. Tìm GTLN của
\(S=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
cho x,y,z>0 thỏa mãn x+y+z=3. Cmr:
\(\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+x^2+z^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
cho a,b,c ∈ Z sao cho 2a+b , 2b+c , 2c+a là các số chính phương. Biết rằng trong3 số trên có 1 số chia hết cho 3. Cmr: (a-b)(b-c)(c-a) chia hết cho 27
cho x,y,z>0 thỏa mãn x+y+z=1. Cmr:
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}\ge14\)
cho x,y,z> 0 thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\) . Tìm GTLN của
\(P=\frac{1}{\sqrt{5x^2+2xy+2y^2}}+\frac{1}{\sqrt{5y^2+2yz+2z^2}}+\frac{1}{\sqrt{5z^2+2xz+2x^2}}\)
tìm x ∈ N* để \(4x^3+14x^2+9x-6\) là số chính phương