HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a) ∆y = f(x+∆x) - f(x) = 2(x+∆x) - 5 - (2x - 5) = 2∆x và = = 2.
b) ∆y = f(x+∆x) - f(x) = (X+ ∆x)2 - 1 - (x2 - 1) = 2x∆x + (∆x)2 = ∆x(2x + ∆x) và = = 2x + ∆x.
c) ∆y = f(x+∆x) - f(x) = 2(x + ∆x)3 - 2x3 = 6x2∆x + 6x(∆x)2 + 2(∆x)3 = 2∆x.(3x2 + 3x∆x + (∆x)2 ) và = 6x2 + 6x∆x + 2(∆x)2.
d) ∆y = f(x+∆x) - f(x) = - = - và = .
a) ∆y = f(x0+∆x) - f(x0) = f(2) - f(1) = 23 - 13 = 7.
b) ∆y = f(x0+∆x) - f(x0) = f(0,9) - f(1) = - 13 = - 1 = -0,271.
a) y' = 3.(x7- 5x2)2.(x7- 5x2)' = 3.(x7 - 5x2)2.(7x6 - 10x) = 3x.(x7 - 5x2)2(7x5 - 10).
b) y = 5x2 - 3x4 + 5 - 3x2 = -3x4 + 2x2 + 5, do đó y' = -12x3 + 4x = -4x.(3x2 - 1).
c) y' = = = .
d) y' = = = .
e) y' = 3. . = 3. = - ..
a) Giả sử ∆x là số gia của số đối tại x0= 1. Ta có:
∆y = f(1 + ∆x) - f(1) = 7 + (1 + ∆x) - (1 + ∆x)2 - (7 + 1 - 12) = -(∆x)2 - ∆x ;
= - ∆x - 1 ; = (- ∆x - 1) = -1.
Vậy f'(1) = -1.
b) Giả sử ∆x là số gia của số đối tại x0= 2. Ta có:
∆y = f(2 + ∆x) - f(2) = (2 + ∆x)3 - 2(2 + ∆x) + 1 - (23 - 2.2 + 1) = (∆x)3 + 6(∆x)2 + 10∆x;
= (∆x)2 + 6∆x + 10; = [(∆x)2 + 6∆x + 10] = 10.
Vậy f'(2) = 10.
a) y' = 5x4 - 12x2 + 2.
b) y' = - + 2x - 2x3.
c) y' = 2x3 - 2x2 + .
d) y = 24x5 - 9x7 => y' = 120x4 - 63x6.
a) y' = 2x - = 2x - .
b) y' = = .
c) y' = = = = .
d) y' = = = = .
a) = = .
b) = = .
c) = = .
d) y' =\(\dfrac{\left(x^2+7x+3\right)'\left(x^2-3x\right)-\left(x^2+7x+3\right)\left(x^2-3x\right)'}{\left(x^2-3x\right)^2}\)=\(\dfrac{\left(2x+7\right)\left(x^2-3x\right)-\left(x^2+7x+3\right)\left(2x-3\right)}{\left(x^2-3x\right)^2}\)=\(\dfrac{-2x^2-6x+9}{\left(x^2-3x\right)^2}\)
A = 3^100 - 3^99 + 3^98 - 3^97 +...........+ 3^2 - 3 + 1 3A = 3^101 - 3^100 + 3^99 - 3^98 +...+3^3 -3^2 +3 => 4A = 3A + A = 3^101 + 1 A = 3101 + 1
4
a) y' = 5cosx -3(-sinx) = 5cosx + 3sinx;
c) y' = cotx +x. = cotx -.
d) + = = (x. cosx -sinx).
e) = = .
f) y' = (√(1+x2))' cos√(1+x2) = cos√(1+x2) = cos√(1+x2).
Ta có f'(x) = 2x, suy ra f'(1) = 2
và φ'(x) = 4 + . cos = 4 + . cos, suy ra φ'(1) = 4.
Vậy = = .