HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
1) \(1019x^2+18y^4+1007z^2\)
\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)
\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)
2) A = n3 - n2 + n - 1
A = n2(n - 1) + (n - 1)
A = (n - 1)(n2 + 1)
Để A nguyên tố thì n > 1
=> n2 + 1 > 1
Mà A = (n - 1)(n2 + 1) là số nguyên tố, chỉ gồm 2 ước là 1 và chính nó
Nên A = n2 + 1; n - 1 = 1
=> n = 2 (TM)
b) n5 - n + 2
= n(n4 - 1) + 2
= n(n2 - 1)(n2 + 1) + 2
= n(n - 1)(n + 1)(n2 + 1) + 2
n(n - 1)(n + 1) là tích 3 số nguyên liên tiếp do n \(\in N\) nên n(n - 1)(n + 1) chia hết cho 3
=> n(n - 1)(n + 1)(n2 + 1) + 2 chia 3 dư 2, không là số chính phương
Vậy ...
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
=> \(\dfrac{abc}{ac+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)
=> ac + bc = ab + ac = bc + ab (do abc \(\ne0\))
=> ac + bc - ab - ac = 0
=> bc - ab = 0
=> b(c - a) = 0
Mà b \(\ne0\) nên c - a = 0 => c = a
Tương tự ta có: a = b
Từ đó có: a = b = c
Thay vào M được:
\(M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
x2 + y = y2 + x
<=> x2 - y2 + y - x = 0
<=> (x - y)(x + y) - (x - y) = 0
<=> (x - y)(x + y - 1) = 0
Mà x - y \(\ne0\) do x \(\ne y\) nên x + y - 1 = 0
=> x + y = 1
\(A=\dfrac{x^2+y^2+xy}{xy-1}=\dfrac{\left(x+y\right)^2-2xy+xy}{xy-1}=\dfrac{1-xy}{xy-1}\)
\(=-1\)
a) +) ab = 0, bđt đã cho luôn đúng
+) ab \(\ne0\), bđt đã cho tương đương:
a6 + b2a4 + b6 + a2b4 \(\ge a^6+b^6+2a^3b^3\)
\(\Leftrightarrow b^2a^4+a^2b^4\ge2a^3b^3\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\), luôn đúng
Dấu "=" xảy ra khi a = b
b) tương tự
Đề sai, tỉ lệ nghịch ... ms đúng
Gọi số cần tìm là ab (a;b là các chữ sốkhác 0)
Không mất tính tổng quát giả sử a + b; a - b; ab tỉ lệ với 35;210; 12
=> \(35\left(a+b\right)=210\left(a-b\right)=12ab\)
\(\Rightarrow\dfrac{a+b}{210}=\dfrac{a-b}{35}=\dfrac{a+b+a-b}{210+35}=\dfrac{2a}{245}\) (TCCDTSBN)
=> 245(a + b) = 210.2a
=> 245a + 245b = 420a
=> 245b = 175a
=> 7b = 5a
đến đây dễ r`
2) A B C G D K
Gọi K là giao điểm của BC và AD
\(\Delta\) ABC đều nên trung tuyến đồng thời là trung trực
=> AG là đường trung trực của BC
=> GC = QB (1)
G là trọng tâm của \(\Delta\) ABC nên \(GK=\dfrac{1}{2}AG\)
Mà GA = GD (gt) nên \(GK=\dfrac{1}{2}GD=\dfrac{1}{2}\left(GK+KD\right)\)
=> GK = KD
\(\Delta GKC=\Delta DKB\left(c.g.c\right)\) => CG = DB (2 cạnh t/ứ) (2)
Từ (1) và (2) => \(\Delta BDG\) đều (đpcm)
Áp dụng bđt Cauchy Schwarz dạng Engel ta có:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\left(a+b+c\right).\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)
\(\ge\dfrac{9}{2}\left(đpcm\right)\)
Ta có: (x-y)2\(\ge0\) => x2+y2-2xy \(\ge\)0
=> x2+y2 \(\ge\)2xy, điều này luôn đúng với x;y dương
Theo đề: x+y=16 => (x+y)2=16
=> x2+y2+2xy=256 \(\le2\left(x^2+y^2\right)\)
=> 128 \(\le x^2+y^2\)
\(M=\dfrac{9}{xy}+\dfrac{17}{x^2+y^2}\ge\dfrac{9}{\dfrac{x^2+y^2}{2}}+\dfrac{17}{x^2+y^2}=\dfrac{35}{x^2+y^2}\)
\(M\ge\dfrac{35}{128}\)
Dấu "=" xảy ra khi x = y = 8
b) t/g MCK = t/g ACK (c.g.c)
=> CMK = CAK (2 góc t/ứ)
t/g BAN cân tại A (AB = BN) => BAN = BNA (t/c tam giác cân)
Mà: BAN + CAK = BAC = 90o nên BNA + CMK = 90o
hay MNK + NMK = 90o
từ đó => MKN = 90o
=> MK _|_ AN; BD _|_ AN
=> MK // BD (đpcm)