Bài 3: Gia tốc

Nội dung lý thuyết

Các phiên bản khác

I. Chuyển động biến đổi

Một ô tô đang đứng yên, bắt đầu chuyển động thì vận tốc tăng dần (chuyển động nhanh dần); khi đang chuyển động muốn dừng lại thì vận tốc giảm dần (chuyển động chậm dần).

 

Chuyển động có vận tốc thay đổi được gọi là chuyển động biến đổi.

@2571409@

II. Gia tốc của chuyển động biến đổi

Nếu trong thời gian \(\Delta t\), độ biến thiên vận tốc là \(\Delta\text{v}\) thì độ biến thiên của vận tốc trong một đơn vị thời gian là:

\(a=\dfrac{\Delta\text{v}}{\Delta t}=\dfrac{\text{v}_t-\text{v}_0}{t-t_0}\)

Đại lượng \(a\) cho biết sự thay đổi nhanh hay chậm của vận tốc được gọi là gia tốc của chuyển động (gọi tắt là gia tốc).

Nếu \(\Delta\text{v}\) có đơn vị là m/s (m.s-1), \(\Delta t\) có đơn vị là giây (s), thì gia tốc có đơn vị là m/s2 (m.s-2).

Gia tốc xác định bằng công thức \(a=\dfrac{\Delta\text{v}}{\Delta t}\) được gọi là gia tốc trung bình. Nếu ∆t rất nhỏ thì có thể coi gia tốc này là gia tốc tức thời.

Vì \(\Delta\overrightarrow{\text{v}}\) là đại lượng vectơ, nên gia tốc \(\overrightarrow{a}\) cũng là đại lượng vectơ:

\(\overrightarrow{a}=\dfrac{\Delta\overrightarrow{\text{v}}}{\Delta t}\)

@2571493@

1. Gia tốc là đại lượng cho biết sự thay đổi nhanh chậm của sự thay đổi vận tốc: \(\overrightarrow{a}=\dfrac{\Delta\overrightarrow{\text{v}}}{\Delta t}\)

2. Khi \(\overrightarrow{a}\) cùng chiều với \(\overrightarrow{\text{v}}\) (a.v > 0): chuyển động nhanh dần; khi \(\overrightarrow{a}\) ngược chiều với \(\overrightarrow{\text{v}}\) (a.v < 0): chuyển động chậm dần.

3. Đơn vị của gia tốc trong hệ SI là m/s2 (m.s-2).