Bài 2. Hình chữ nhật. Hình thoi. Hình bình hành - Hình thang cân

Nội dung lý thuyết

Các phiên bản khác

1. Hình chữ nhật

Hình chữ nhật ABCD có:

  • Bốn đỉnh A, B, C, D.
  • Hai cặp cạnh đối diện bằng nhau: AB = CD; AD = BC.
  • Hai cặp cạnh đối diện song song: AB song song với CD; BC song song với AD.
  • Bốn góc đỉnh A, B, C, D bằng nhau và bằng góc vuông.
  • Hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường: AC = BD và OA = OC; OB = OD.

Ví dụ. Cho hình chữ nhật ABCD có AD = 8 cm; AC = 14 cm. Tính BC, BD.

Giải:

Hình chữ nhật có cặp cạnh đối diện bằng nhau nên BC = AD = 8 cm.

Hình chữ nhật có hai đường chéo bằng nhau nên BD = AC = 14 cm.

Vẽ hình chữ nhật

Để vẽ hình chữ nhật ABCD có AB = 7 cm, AD = 5 cm ta làm theo các bước sau:

Bước 1: Vẽ đoạn thẳng AB = 7 cm và đoạn thẳng AD = 5 cm vuông góc với nhau.

Bước 2: Qua B vẽ đường thẳng vuông góc với AB.

Bước 3: Qua D vẽ đường thẳng vuông góc với AD.

Hai đường thẳng này cắt nhau tại C. 

ABCD là hình chữ nhật cần vẽ.

​@1612111@

2. Hình thoi

Hình thoi ABCD có:

  • Bốn đỉnh A, B, C, D.
  • Bốn cạnh bằng nhau: AB = BC = CD = DA.
  • Hai cặp cạnh đối diện song song: AB song song với CD; BC song song với AD.
  • Hai đường chéo AC và BD vuông góc với nhau.

Vẽ hình thoi

Để vẽ hình thoi ABCD khi biết AB = 8 cm và đường chéo AC = 10 cm ta làm như sau:

  • Vẽ đoạn thẳng AC = 10 cm.
  • Lấy A và C làm tâm, vẽ hai đường tròn bán kính 8 cm, hai đường tròn này cắt nhau tại hai điểm B và D.
  • Nối B với A, B với C, D với A, D với C.

ABCD là hình thoi cần vẽ.

​@1612162@

3. Hình bình hành

Hình bình hành ABCD có:

  • Bốn đỉnh A, B, C, D.
  • Hai cặp cạnh đối diện bằng nhau: AB = CD; BC = AD.
  • Hai cặp cạnh đối diện song song: AB song song với CD; BC song song với AD.
  • Hai cặp góc đối diện bằng nhau: góc đỉnh A bằng góc đỉnh C; góc đỉnh B bằng góc đỉnh D.
  • Hai đường chéo cắt nhau tại trung điểm của mỗi đường: OA = OC; OB = OD.

Vẽ hình bình hành

Để vẽ hình bình hành ABCD với AB = 5 cm, BC = 7 cm và đường chéo AC = 10 cm ta làm như sau:

  • Vẽ đoạn thẳng AB = 5 cm.
  • Vẽ đường tròn tâm A bán kính 10 cm; vẽ đường tròn tâm B bán kính 7 cm; hai đường tròn cắt nhau tại C. Nối B với C.
  • Từ A kẻ đường thẳng song song với BC; từ C kẻ đường thẳng song song với AB; hai đường thẳng này cắt nhau tại D.

ABCD là hình bình hành cần vẽ.

​@1620043@

4. Hình thang cân

Hình thang cân ABCD có:

  • Hai cạnh đáy song song: AB song song với CD.
  • Hai cạnh bên bằng nhau: BC = AD.
  • Hai góc kề một đáy bằng nhau: góc đỉnh A bằng góc đỉnh B, góc đỉnh C bằng góc đỉnh D.
  • Hai đường chéo bằng nhau: AC = BD.

Ví dụ. Cho hình thang cân MNPQ có MQ = 9 cm; MP = 16 cm, góc MNP bằng 130o. Tính MQ, MP, số đo góc QMN.

Giải:

Hình thang cân có:

  • hai cạnh bên bằng nhau nên MQ = NP = 9 cm.
  • có hai đường chéo bằng nhau nên MP = NQ = 16 cm.
  • hai góc kề một đáy bằng nhau nên góc MNP = góc QMN = 130o.
​@1620130@