Let P(x) be a polynomial of degree 2015. Suppose P(n)=\(\dfrac{n}{n+1}\) for all n =0, 1, 2, ..., 2015. Find the value of P(2016)
Let P(x) be a polynomial of degree 2015. Suppose P(n)=\(\dfrac{n}{n+1}\) for all n =0, 1, 2, ..., 2015. Find the value of P(2016)
Tính A biết \(A=\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\)
Các bạn ơi làm sao để khôi phục lại tin nhắn đã mất hả các bạn làm ơn chỉ giúp mk vs!!!!!!!!!!
Cho 3 số nguyên dương a, b, c thỏa mãn \(\sqrt{a+2\sqrt{3}}=\sqrt{b}+\sqrt{c}\)
Tính giá trị của a+b+c
CM: A = n3 + 6n2 – 19n – 24 chia hết cho 6.
n^3 – n +6n^2 -18n -24
=n(n^2 -1 ) +6 (n^2- 3n -4)
=n(n-1)(n+1) +6(n-4)(n+1)
vì n(n-1)(n+1) chia hết cho 2,3 => chia hết cho 6.
6(n-4)(n+1) cũng chia hết cho 6
=> A chia hết cho 6
Tìm x biết \(\dfrac{1}{\left(X+29\right)^2}\)+\(\dfrac{1}{\left(X+30\right)^2}\)=5/4
đặt x+29=y
ta có :
\(\dfrac{1}{y^2}+\dfrac{1}{\left(y+1\right)^2}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{2y^2+2y+1}{y^4+2y^3+y^2}=\dfrac{5}{4}\)
\(\Leftrightarrow5y^4+10y^3-3y^2-8y-4=0\)
\(\Leftrightarrow\left(y-1\right)\left(5y^3+15y^2+12y+4\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(y+2\right)\left(5y^2+5y+2\right)=0\)
\(\left[{}\begin{matrix}y-1=0\Leftrightarrow y=1\Rightarrow x+29=1\Leftrightarrow x=-28\\y+2=0\Leftrightarrow y=-2\Rightarrow x+29=-2\Leftrightarrow x=-31\\5y^2+5y+2=0\left(loại\right)\end{matrix}\right.\)
vậy, S={-31;-28}
Tìm nghiệm của đa thức sau:
\(Q\left(x\right)=3x^2+5x-21\)
Xài delta nhé!
Cho Q(x) = 0 hay \(3x^2+5x-21=0\)
Ta có:
\(\Delta=b^2-4ac=5^2-4.3.\left(-21\right)=277\)
Vì \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt.
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-5+\sqrt{277}}{6}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-5-\sqrt{277}}{6}\)
Vậy..............
So sánh:
\(A=2^{16}\)và \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
p/s: có cách làm nhé
Ta có: \(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^8-1\right)\left(2^8+1\right)\)
\(B=2^{16}-1\) < A
Vậy A > B
Ta có:
\(A=2^{16}\)
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2+1\right)\left(2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(B=\left(2^8-1\right)\left(2^8+1\right)\)
\(B=2^{16}-1< 2^{16}\)
Vậy A > B
Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
Vì \(2^{16}>2^{16}-1\Rightarrow A>B\)
Tính: \(\left(\dfrac{1000}{1}+\dfrac{999}{2}+\dfrac{998}{3}+...+\dfrac{2}{999}+\dfrac{1}{1000}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1001}\right)\)
Nếu \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^m+1\right)+1=2^{3m-218}\) thì m bằng ...
<=> (24-1)(24+1).....(2m+1)=23m-218
<=> 22m-1+1=23m-218
<=> 22m=23m-218
<=>2m=3m-218
=>m=218
<=> (24-1)(24+1).....(2m+1)+1=23m-218
<=> 22m-1+1=23m-218
<=> 22m=23m-218
<=>2m=3m-218
=>m=218
ở dưới mình nhầm nha!!!