Cho tứ giác ABCD nội tiếp.Tiếp tuyến tại A,D cắt nhau tại M
tiếp tuyến tại B,C cắt nhau tại N
AC giao BD tại Q
CMR: M,Q,N thẳng hàng.
Cho tứ giác ABCD nội tiếp.Tiếp tuyến tại A,D cắt nhau tại M
tiếp tuyến tại B,C cắt nhau tại N
AC giao BD tại Q
CMR: M,Q,N thẳng hàng.
Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn \(\left(C\right):\left(x+1\right)^2+\left(y-2\right)^2=13\) và đường thẳng \(\left(\Delta\right):x-5y-2=0\). Gọi giao điểm (C) với đường thẳng \(\left(\Delta\right)\) là A, B. Xác định tọa độ điểm C sao cho tam giác ABC vuông tại B và nội tiếp đường tròn (C)
Tọa độ điểm A, B là nghiệm của hệ phương trình :
\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\) \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)
\(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)
Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC
Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)
\(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)
Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)