Bài tập cuối chương 7

H24
Hướng dẫn giải Thảo luận (1)

\(\Delta ' = b{'^2} - ac = {1^1} - 1.c = 1 - c\)

Để phương trình có 2 nghiệm phân biệt thì \(\Delta ' = 1 - c > 0\) do đó \(c < 1\)

Chọn đáp án A.

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Vì điểm \(\left( {1; - 2} \right)\) thuộc đồ thị hàm số, nên thay \(x = 1;y =  - 2\) vào \(y = a{x^2}\), ta được:

\(\begin{array}{l} - 2 = a{.1^2}\\a =  - 2(TM)\end{array}\)

Chọn đáp án B.

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (2)

a) 

\(x\) \(-3\) \(-1\) \(0\) \(1\) \(3\)
\(y=-\dfrac{2}{3}x^2\) \(-6\) \(-\dfrac{2}{3}\) \(0\) \(-\dfrac{2}{3}\) \(-6\)

 

b) 
loading... 

 

Trả lời bởi Nguyễn Tuấn Tú
H24
Hướng dẫn giải Thảo luận (1)

a) Vì điểm \(\left( {2;\frac{{16}}{3}} \right)\) thuộc đồ thị hàm số, nên thay \(x = 2;y = \frac{{16}}{3}\) vào \(y = a{x^2}\), ta được:

\(\begin{array}{l}\frac{{16}}{3} = a{.2^2}\\a = \frac{4}{3}\end{array}\)

Vậy \(a = \frac{4}{3}\)

b) Với \(a = \frac{4}{3}\) hàm số trở thành \(y = \frac{4}{3}{x^2}.\)

Điểm thuộc đồ thị hàm số có hoành độ bằng 3 nên \(x = 3,\) ta có:

\(\begin{array}{l}y = \frac{4}{3}{x^2}\\y = \frac{4}{3}{.3^2} = 12.\end{array}\)

Vậy điểm cần tìm là \(\left( {3;12} \right)\).

c) Điểm thuộc đồ thị hàm số có tung độ bằng 4 nên \(y = 4.\) Ta có:

\(\begin{array}{l}y = \frac{4}{3}{x^2}\\4 = \frac{4}{3}{x^2}\end{array}\)

\(x =  \pm \sqrt 3 \)

Vậy điểm cần tìm là \(\left( {\sqrt 3 ;4} \right),\left( { - \sqrt 3 ;4} \right).\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a)   Phương trình có các hệ số: \(a = 3;b =  - 2;c =  - 4.\) Do \(b =  - 2\) nên \(b' =  - 1.\)

\(\Delta ' = {( - 1)^2} - 3.( - 4) = 13 > 0\)

Phương trình có 2 nghiệm phân biệt là:

\({x_1} = \frac{{ - \left( { - 1} \right) + \sqrt {13} }}{3} = \frac{{1 + \sqrt {13} }}{3};{x_2} = \frac{{ - \left( { - 1} \right) - \sqrt {13} }}{3} = \frac{{1 - \sqrt {13} }}{3}.\)

b)  Phương trình có các hệ số: \(a = 9;b =  - 24;c = 16.\) Do \(b =  - 24\) nên \(b' =  - 12.\)

\(\Delta ' = {( - 12)^2} - 9.16 = 0\)

Phương trình có nghiệm kép  \({x_1} = {x_2} = \frac{{ - \left( { - 12} \right)}}{9} = \frac{4}{3}.\)

c)   Phương trình có các hệ số: \(a = 2;b = 1;c = \sqrt 2 .\)

\(\Delta ' = {1^2} - 4.2.\sqrt 2  = 1 - 8\sqrt 2  < 0\)

Vậy phương trình vô nghiệm.

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (2)

a) 
\(x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b)
\(-3x^2+5x+8=0\\ \Leftrightarrow-\left(3x^2+3x\right)+\left(8x+8\right)=0\\ \Leftrightarrow-3x\left(x+1\right)+8\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(8-3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\8-3x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{3}\end{matrix}\right.\)

c)
\(\dfrac{1}{3}x^2+\dfrac{1}{6}x-\dfrac{1}{2}=0\\ \Leftrightarrow\dfrac{2x^2}{6}+\dfrac{x}{6}-\dfrac{3}{6}=0\\ \Leftrightarrow\dfrac{2x^2+x-3}{6}=0\\ \Leftrightarrow2x^2+x-3=0\\ \Leftrightarrow\left(2x^2-2x\right)+\left(3x-3\right)=0\\ \Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\\ \Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-3\\x=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)

Vậy...
 

Trả lời bởi Nguyễn Tuấn Tú
H24
Hướng dẫn giải Thảo luận (1)

a)   Hai số cần tìm là nghiệm của phương trình: \({x^2} - 4\sqrt 2 x + 6 = 0\).

Phương trình có các hệ số: \(a = 1;b =  - 4\sqrt 2 ;c = 6.\) Do \(b =  - 4\sqrt 2 \) nên \(b' =  - 2\sqrt 2 .\)

\(\Delta ' = {( - 2\sqrt 2 )^2} - 1.6 = 2 > 0\)

Phương trình có 2 nghiệm phân biệt là: \({x_1} = \frac{{ - \left( { - 2\sqrt 2 } \right) + \sqrt 2 }}{1} = 3\sqrt 2 ;{x_2} = \frac{{ - \left( { - 2\sqrt 2 } \right) - \sqrt 2 }}{1} = \sqrt 2 .\)

Vậy hai số cần tìm là \(3\sqrt 2 ;\sqrt 2 .\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Do phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm \({x_1},{x_2}\) nên áp dụng định lý Viète, ta có:

\({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\)

Ta lại có:

\(\begin{array}{l}VT = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = a\left( {{x^2} - x.{x_2} - x.{x_1} + {x_1}.{x_2}} \right)\\ = a\left[ {{x^2} - x\left( {{x_1} + {x_2}} \right) + {x_1}.{x_2}} \right]\\ = a\left[ {{x^2} - x.\frac{{ - b}}{a} + \frac{c}{a}} \right]\\ = a\left( {{x^2} + \frac{b}{a}x + \frac{c}{a}} \right)\\ = a{x^2} + bx + c\\ = VP(dpcm)\end{array}\)

a) Ta có \(a - b + c = 0\) nên phương trình có hai nghiệm \({x_1} =  - 1;{x_2} = 3\).

Vậy \({x^2} - 2x - 3 = \left( {x + 1} \right)\left( {x - 3} \right)\)

b) Ta có: \(\Delta  = {5^2} - 4.3.\left( { - 2} \right) = 49 > 0\)

Phương trình có hai nghiệm là \({x_1} = \frac{{ - 5 + \sqrt {49} }}{{2.3}} = \frac{2}{6} = \frac{1}{3}\); \({x_2} = \frac{{ - 5 - \sqrt {49} }}{{2.3}} = \frac{{ - 12}}{6} =  - 2\).

Vậy \(3{x^2} + 5x - 2 = 3.\left( {x - \frac{1}{3}} \right)\left( {x + 2} \right)\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Điều kiện: \(0 < x < 100.\)

Sau khi giảm giá lần đầu tiên, giá của chiếc áo là:

\(120000 - x\% .120000 = 120000 - 1200x\) (đồng).

Sau khi giảm giá lần thứ 2, giá của chiếc áo là:

\(120000 - 1200x - x\% (120000 - 1200x) \)

\(= 12{x^2} - 2400x + 120000\) (đồng).

Vì giá của chiếc áo còn 76800 đồng nên ta có phương trình:

\(\begin{array}{l}12{x^2} - 2400x + 120000 = 76800\\{x^2} - 200x + 3600 = 0\end{array}\)

Phương trình có các hệ số: \(a = 1;b =  - 200;c = 3600.\) Do \(b =  - 200\) nên \(b' =  - 100.\)

\(\Delta ' = {\left( { - 100} \right)^2} - 1.3600 = 6400 > 0\)

Phương trình có 2 nghiệm phân biệt là: \({x_1} = \frac{{ - \left( { - 100} \right) + \sqrt {6400} }}{1} = 180;{x_2} = \frac{{ - \left( { - 100} \right) - \sqrt {6400} }}{1} = 20.\)

Vì \(0 < x < 100\) nên \(x = 20.\)

Vậy \(x = 20.\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Gọi 2 kích thước mặt đáy của khay hình chữ nhật là \(x_1; x_2\) (cm) (x_1;x_2 > 0)

Theo đề bài, ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{220}}{2} = 110\\{x_1}.{x_2} = 2496\end{array} \right.\)

Khi đó \(x_1; x_2\) là hai nghiệm của phương trình:

\(x^2 - 110x + 2496 = 0\), \(b' = \frac{-110}{2} = -55\)

Ta có: \(\Delta ' = (-55)^2 - 1.2496 = 529 > 0\)

Phương trình có hai nghiệm phân biệt \(x_1 = \frac{ 55 + \sqrt{529}}{1} = 78\) (TM); \(x_1 = \frac{ 55 - \sqrt{529}}{1} = 32\) (TM)

Vì 78 > 32 nên chiều dài là 78cm, chiều rộng là 32cm.

Vậy chiều dài mặt đáy của khay là 78cm, chiều rộng mặt đáy của khay 32cm.

Trả lời bởi datcoder