Bài tập cuối chương 7

H24

Giải các phương trình:

a)   \(3{x^2} - 2x - 4 = 0\)

b)  \(9{x^2} - 24x + 16 = 0\)

c)   \(2{x^2} + x + \sqrt 2  = 0\)

H24
14 tháng 10 2024 lúc 22:49

a)   Phương trình có các hệ số: \(a = 3;b =  - 2;c =  - 4.\) Do \(b =  - 2\) nên \(b' =  - 1.\)

\(\Delta ' = {( - 1)^2} - 3.( - 4) = 13 > 0\)

Phương trình có 2 nghiệm phân biệt là:

\({x_1} = \frac{{ - \left( { - 1} \right) + \sqrt {13} }}{3} = \frac{{1 + \sqrt {13} }}{3};{x_2} = \frac{{ - \left( { - 1} \right) - \sqrt {13} }}{3} = \frac{{1 - \sqrt {13} }}{3}.\)

b)  Phương trình có các hệ số: \(a = 9;b =  - 24;c = 16.\) Do \(b =  - 24\) nên \(b' =  - 12.\)

\(\Delta ' = {( - 12)^2} - 9.16 = 0\)

Phương trình có nghiệm kép  \({x_1} = {x_2} = \frac{{ - \left( { - 12} \right)}}{9} = \frac{4}{3}.\)

c)   Phương trình có các hệ số: \(a = 2;b = 1;c = \sqrt 2 .\)

\(\Delta ' = {1^2} - 4.2.\sqrt 2  = 1 - 8\sqrt 2  < 0\)

Vậy phương trình vô nghiệm.

Bình luận (0)