Bài 11. Tỉ số lượng giác của góc nhọn

H24
Hướng dẫn giải Thảo luận (1)

Vì \({35^0} + {55^0} = {90^0}\) nên \(\sin {35^0} = \cos {55^0},\tan {35^0} = \cot {55^0}.\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) \(\sin {40^0}54'\)

Ta có: \(\sin {40^0}54' = 0,6547408137 \approx 0,655\)

b) \(\cos {52^0}15'\)

Ta có: \(\cos {52^0}15' = 0,61221728 \approx 0,612\)

c) \(\tan {69^0}36'\)

Ta có: \(\tan {69^0}36' = 2,688918967 \approx 2,689\)

d) \(\cot {25^0}18'\)

Ta có: \(\tan {25^0}18' = 0,4726978344\) nên \(\cot {25^0}18' = \frac{1}{{\tan {{25}^0}18'}} = 2,115516356 \approx 2,116\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Tam giác ABC vuông tại A, ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)

Nên \(B{C^2} = {a^2} + {a^2} = 2{a^2}\) suy ra \(BC = a\sqrt 2 \)

a) Tỉ số \(\frac{{AB}}{{BC}} = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\) và \(\frac{{AC}}{{BC}} = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\).

Do đó \(\sin {45^0} = \sin \widehat B = \frac{{AC}}{{BC}} = \frac{{\sqrt 2 }}{2};\) \(\cos {45^0} = \cos \widehat B = \frac{{AB}}{{BC}} = \frac{{\sqrt 2 }}{2}.\)

b) Tỉ số \(\frac{{AB}}{{AC}} = \frac{a}{a} = 1;\) \(\frac{{AC}}{{AB}} = \frac{a}{a} = 1\)

Do đó \(\tan {45^0} = \tan \widehat B = \frac{{AC}}{{AB}} = 1;\) \(\cot {45^0} = \cot \widehat B = \frac{{AB}}{{AC}} = 1\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Ta có:

\(\sin \alpha  = \frac{{BC}}{{AB}};\) \(\cos \alpha  = \frac{{AC}}{{AB}};\) \(\tan \alpha  = \frac{{BC}}{{AC}};\) \(\cot \alpha  = \frac{{AC}}{{BC}}\)

\(\sin \beta  = \frac{{AC}}{{AB}};\) \(\cos \beta  = \frac{{BC}}{{AB}};\) \(\tan \beta  = \frac{{AC}}{{BC}};\) \(\cot \beta  = \frac{{BC}}{{AC}}\)

Từ đó ta có

\(\sin \alpha  = \cos \beta ;\) \(\cos \alpha  = \sin \beta ;\) \(\tan \alpha  = \cot \beta ;\) \(\cot \alpha  = \tan \beta .\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) Tam giác ABC đều có đường cao AH nên AH cũng là đường trung tuyến của tam giác. Do đó ta có H là trung điểm của BC nên \(BH = HC = \frac{{BC}}{2} = \frac{{2a}}{2} = a\)

Xét tam giác ABH vuông tại H, ta có: \(A{B^2} = A{H^2} + H{B^2}\) (Đjnh lý Pythagore)

Suy ra \({\left( {2a} \right)^2} = A{H^2} + {a^2}\) nên \(A{H^2} = 3a\) hay \(AH = a\sqrt 3 \)

b) Tam giác ABC đều nên \(\widehat A = \widehat B = \widehat C = {60^0}\)

Nên \(\cos {60^0} = \cos \widehat B = \frac{{BH}}{{AB}} = \frac{a}{{2a}} = \frac{1}{2};\) \(\sin {60^0} = \sin \widehat B = \frac{{AH}}{{AB}} = \frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 }}{2}\)

Tam giác ABC đều nên AH vừa là đường cao vừa là đường phân giác của góc A, do đó \(\widehat {BAH} = \widehat {CAH} = \frac{{\widehat {BAC}}}{2} = \frac{{{{60}^0}}}{2} = {30^0}\)

\(\sin {30^0} = \sin \widehat {BAH} = \frac{{BH}}{{AB}} = \frac{a}{{2a}} = \frac{1}{2};\) \(\cos {30^0} = \cos \widehat {BAH} = \frac{{AH}}{{AB}} = \frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 }}{2}\)

c) \(\tan {30^0} = \tan \widehat {BAH} = \frac{{BH}}{{AH}} = \frac{a}{{a\sqrt 3 }} = \frac{{\sqrt 3 }}{3}\)

\(\cot {30^0} = \cot \widehat {BAH} = \frac{{AH}}{{BH}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \)

\(\tan {60^0} = \tan \widehat {ABH} = \frac{{AH}}{{BH}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \)

\(\cot {60^0} = \tan \widehat {ABH} = \frac{{BH}}{{AH}} = \frac{a}{{a\sqrt 3 }} = \frac{{\sqrt 3 }}{3}\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Xét tam giác ABC vuông tại A, ta có \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)

Nên \(B{C^2} = {5^2} + {12^2} = 169\) suy ra \(BC = 13\) (cm) .

Theo định nghĩa của tỉ số lượng giác ta có:

\(\sin \widehat B = \frac{{AC}}{{BC}} = \frac{{12}}{{13}};\\\cos \widehat B = \frac{{AB}}{{BC}} = \frac{5}{{13}};\\\tan \widehat B = \frac{{AC}}{{AB}} = \frac{{12}}{5};\\\cot \widehat B = \frac{{AB}}{{AC}} = \frac{5}{{12}}\)

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Góc C có cạnh đối là AB và cạnh kề của góc C là AC.

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Theo định nghĩa tỉ số lượng giác sin, ta có \(\sin\alpha=\dfrac{h}{a}\).

Vậy ta sẽ xác định được “góc dốc” α của một đoạn đường dốc khi biết độ dài của dốc là a và độ cao của đỉnh dốc so với đường nằm ngang là h.

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

a) Xét hai tam giác ABC và tam giác A’B’C’ ta có:

\(\begin{array}{l}\widehat A = \widehat {A'} = {90^0}\\\widehat B = \widehat {B'} = \alpha \end{array}\)

Nên \(\Delta ABC\backsim \Delta A'B'C'\left( g-g \right)\)

b) \(\Delta ABC\backsim \Delta A'B'C'\) suy ra \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}}\) (tỉ lệ các cạnh tương ứng)

Do \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}}\) nên ta có \(\frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}}\) (tính chất tỉ lệ thức)

Do \(\frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}}\) nên ta có \(\frac{{A'C'}}{{B'C'}} = \frac{{AC}}{{BC}}\) (tính chất tỉ lệ thức)

Do \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}}\) nên ta có \(\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}}\) và \(\frac{{AC}}{{AB}} = \frac{{A'B'}}{{A'C'}}\) (tính chất tỉ lệ thức) 

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Ta có: \(\tan \widehat C = \frac{{AB}}{{AC}}\) suy ra \(\tan {45^0} = \frac{c}{{AC}}\) do đó \(1 = \frac{c}{{AC}}\) hay \(AC = c\)

\(\sin \widehat C = \frac{{AB}}{{BC}}\) suy ra \(\sin {45^0} = \frac{c}{{BC}}\) do đó \(\frac{{\sqrt 2 }}{2} = \frac{c}{{BC}}\) hay \(BC = \frac{{2c}}{{\sqrt 2 }} = \sqrt 2 c\)

Trả lời bởi datcoder