vì x>y>0 nên \(x+y\ne0\).Theo tính chất cơ bản của phân thức,ta có :
\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\dfrac{x^2-y^2}{x^2+2xy+y^2}\left(1\right)\)
Mặt khác,vì x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy \(\dfrac{x^2-y^2}{x^2+2xy+y^2}< \dfrac{x^2-y^2}{x^2+y^2}\left(2\right)\) Từ \(\left(1\right),\left(2\right)\) ta suy ra : \(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+y^2}\)