Phân thức đại số

PM

chứng minh rằng: \(\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}=\dfrac{1}{x-y}\)

TT
6 tháng 11 2017 lúc 19:42

\(\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}=\dfrac{1}{x-y}\)

\(VT=\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)

\(=\dfrac{2x^2+2xy+xy+y^2}{\left(2x^3+x^2y\right)+\left(-2xy^2-y^3\right)}\)

\(=\dfrac{\left(2x^2+2xy\right)+\left(xy+y^2\right)}{x^2\left(2x+y\right)-y^2\left(2x+y\right)}\)

\(=\dfrac{2x\left(x+y\right)+y\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)

\(=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{1}{x-y}=VP\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
DC
Xem chi tiết
NH
Xem chi tiết
GC
Xem chi tiết
NA
Xem chi tiết
UN
Xem chi tiết
TL
Xem chi tiết
BA
Xem chi tiết
NN
Xem chi tiết