Phân thức đại số

NT

Cho \(x,y,z\ne0\) .Chứng minh rằng \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{z}{y}\)

TB
17 tháng 5 2017 lúc 19:42

Áp dụng bđt Cauchy, ta có:

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\sqrt{\dfrac{x^2}{y^2}\times\dfrac{y^2}{z^2}}+\sqrt{\dfrac{y^2}{z^2}\times\dfrac{z^2}{x^2}}+\sqrt{\dfrac{x^2}{y^2}\times\dfrac{z^2}{x^2}}=\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{z}{y}\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi x = y = z

Bình luận (0)

Các câu hỏi tương tự
HK
Xem chi tiết
NP
Xem chi tiết
VQ
Xem chi tiết
NP
Xem chi tiết
BA
Xem chi tiết
BV
Xem chi tiết
NM
Xem chi tiết
NY
Xem chi tiết
AD
Xem chi tiết