Bài 1: Hàm số lượng giác

HN

Xét tính chẵn lẻ của các hàm sau đây

1. y = cot2x - sin5x

2. y = cos \(\sqrt{x^2-4}\)\(\)

3. y = | tanx - 1 |

4. y = \(\dfrac{tanx}{cosx+2}\)

5. y = \(\dfrac{sinx}{1+cosx}\)

MP
9 tháng 9 2018 lúc 6:17

1) ta có : tập xác định : \(D=R/\left\{k\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=cot2x-sin5x\)

\(\Rightarrow f\left(-x\right)=cot\left(-2x\right)-sin\left(-5x\right)=-cot2x+sin5x=-f\left(x\right)\)

vậy hàm số này là hàm lẽ

2) ta có : tập xác định : \(D=\left[-\infty;2\right]\cup\left[2;+\infty\right]\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=cos\sqrt{x^2-4}\)

\(\Rightarrow f\left(-x\right)=cos\sqrt{\left(-x\right)^2-4}=\sqrt{x^2-4}=f\left(x\right)\)

vậy hàm số này là hàm chẳn

3) ta có : tập xác định : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=\left|tanx-1\right|\)

\(\Rightarrow f\left(-x\right)=\left|tan\left(-x\right)-1\right|=\left|-tanx-1\right|\ne f\left(x\right);f\left(-x\right)\)

vậy hàm số này là hàm không chẳn không lẽ

4) ta có : tập xác định : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=\dfrac{tanx}{cosx+2}\)

\(\Rightarrow f\left(-x\right)=\dfrac{tan\left(-x\right)}{cos\left(-x\right)+2}=\dfrac{-tanx}{cosx+2}=-f\left(x\right)\)

vậy hàm số này là hàm lẽ

5) ta có : tập xác định : \(D=R/\left\{\pi+k2\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=\dfrac{sinx}{1+cosx}\)

\(\Rightarrow f\left(-x\right)=\dfrac{sin\left(-x\right)}{1+cos\left(-x\right)}=\dfrac{-sinx}{1+cosx}=-f\left(x\right)\)

vậy hàm số này là hàm lẽ

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
MD
Xem chi tiết
PN
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
DN
Xem chi tiết
LK
Xem chi tiết