Bài 1: Hàm số lượng giác

HT

Xđ tính chẵn ,lẻ và tìm TXđ

1,y= cot.4.x

2.|cot .x|

3,y=1-sin 2.x

4,y= sin (x+pi /4) 5.y= x2.tan2x- cot.x 6.\(\dfrac{cos.2x}{1+sin^23.x}\) 7.y=\(\dfrac{sin.x+1}{cos.x}\) 8.y= 1+|cot .x + tan.x|
MP
23 tháng 8 2018 lúc 20:54

1) đặc : \(f\left(x\right)=y=cot4x\)

điều kiện xác định : \(sin4x\ne0\Leftrightarrow4x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{4}\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=cot\left(-4x\right)=-cot4x=-f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm lẽ

2) đặc : \(f\left(x\right)=y=\left|cotx\right|\)

điều kiện xác định : \(sinx\ne0\Leftrightarrow x\ne k\pi\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\left|cot\left(-x\right)\right|=\left|-cotx\right|=\left|cotx\right|=f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm chẳn

3) đặc : \(f\left(x\right)=y=1-sin^2x=cos^2x\)

điều kiện xác định : \(D=R\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=cos^2\left(-x\right)=cos^2x=f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm chẳn

4) đặc : \(f\left(x\right)=y=sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{sinx+cosx}{\sqrt{2}}\)

điều kiện xác định : \(D=R\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{sin\left(-x\right)+cos\left(-x\right)}{\sqrt{2}}=\dfrac{-sinx+cosx}{\sqrt{2}}\ne f\left(x\right);-f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm không chẳn không lẽ

mấy bài còn lại bn làm tương tự cho quen nha

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
DN
Xem chi tiết
BT
Xem chi tiết
TH
Xem chi tiết
NV
Xem chi tiết
SK
Xem chi tiết
LK
Xem chi tiết
NH
Xem chi tiết
DV
Xem chi tiết