Bài 5: Khảo sát sự biến thiên và vẽ đồ thị hàm số

HD

Xác định các hệ số a, b, c, d của hàm số \(y=ax^{3} + bx^{2} + cx +d\). Biết đồ thị hàm số có hai điểm cực trị là (0;0) và (1;1)

AH
13 tháng 9 2017 lúc 21:58

Lời giải:

Vì hai điểm \((0,0);(1;1)\) thuộc đồ thị hàm số đã cho nên:

\(\left\{\begin{matrix} 0=a.0^3+b.0^2+c.0+d=d\\ 1=a+b+c+d\end{matrix}\right.(1)\)

Vì \((0,0);(1,1)\) là hai điểm cực trị nên \(0,1\) là hai nghiệm của PT :

\(y'=3ax^2+2bx+c=0\)

Do đó , áp dụng định lý Viete ta có:

\(\left\{\begin{matrix} 1+0=\frac{-2b}{3a}\\ 1.0=\frac{c}{3a}\end{matrix}\right.\Leftrightarrow \) \(\left\{\begin{matrix} 3a+2b=0\\ c=0\end {matrix}\right.(2)\)

Từ \((1),(2)\) giải hệ pt thu được \(\left\{\begin{matrix} a=-2\\ b=3\\ c=0\\ d=0\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
AN
Xem chi tiết
PG
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
PG
Xem chi tiết