\(x+4\sqrt{x}+4=\left(\sqrt{x}\right)^2+2.2.\sqrt{x}+2^2=\left(\sqrt{x}+2\right)^2\)
\(x+4\sqrt{x}+4=\left(\sqrt{x}\right)^2+2.2.\sqrt{x}+2^2=\left(\sqrt{x}+2\right)^2\)
A=\(\left(\dfrac{x-5\sqrt{x}+4}{x\sqrt{x}-3x+2\sqrt{x}}-\dfrac{3\sqrt{x}+3}{\sqrt{x}+2-x}\right):\left(\dfrac{x-\sqrt{x}-6}{x-3\sqrt{x}}-\dfrac{x-2\sqrt{x}}{x-4\sqrt{x}+4}\right)+\sqrt{x}\)a). Rút gọn A
b). Cho a,b là 2 số dương thỏa mãn a+b≥4. tìm GTNN của biểu thức B=\(5a+11b+\dfrac{2}{a}+\dfrac{72}{b}\)
giải phương trình vô tỉ
1,\(\sqrt{1-\sqrt{x}}+\sqrt{4+x}=3\)
2,\(\sqrt{x+1}+\sqrt[3]{7-x}=2\)
3,\(\sqrt{x}+\sqrt{x+1}=\sqrt{x-1}+\sqrt{x+4}\)
4,\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
5,\(\sqrt[3]{x-1}+\sqrt[3]{x-2}=\sqrt[3]{2x-3}\)
Rút gọn biểu thức
P = \(\dfrac{x+\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{x-6\sqrt{x}+4}{x-4}\)
và tìm giá trị của P khi x=9 + 4\(\sqrt{5}\)
Rút gọn bt A=\(\left(\dfrac{1+\sqrt{x}}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)
Sau đó tìm x để A>1
\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{6\sqrt{x}-4}{x-4}\)
a) Rút gọn
b) Tính giá trị của biểu thức với x= 6-4\(\sqrt{2}\)
gpt \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{2-x}=\dfrac{3x^2-2x+3}{x^2+1}\)
b) \(x^3-11x^2+36x-18=4\sqrt[4]{27x-54}\)
c) \(16x^4+5=6\sqrt[3]{4x^3+x}\)
d) \(\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}=\dfrac{2}{x}\)
Cho biểu thức: \(A=\dfrac{\sqrt{x}-1}{2\sqrt{x}+1}-\dfrac{3}{1-2\sqrt{x}}-\dfrac{4\sqrt{x}+4}{4x-1}\) và \(B=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)với x > 0 , x = 1/4
a. TÍnh giá trị của biểu thức B biết \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
b. Rút gọn biểu thức A
\(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)
\(4\sqrt{x-2}+m^2\sqrt{x+2}=5\sqrt[4]{x^2-4}\)
Tìm m nguyên để phương trình có nghiệm