ĐKXĐ: 2x+3≥0 <=>x≥−32−32
⇔(2x+3-2√2x+32x+3 +1)+(x2+2x+1)=0
⇔(√2x+32x+3 -1)2 +(x+1)2 =0
⇔{√2x+3−1=0x+1=0{2x+3−1=0x+1=0 ⇔{2x+3=1x=−1{2x+3=1x=−1
⇔x=-1
ĐK:\(x\ge\frac{-3}{2}\)
\(\Leftrightarrow x^2+2x+1+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=-1\\2x+3=1\end{matrix}\right.\)\(\Rightarrow x=-1\left(TM\right)\)
Vậy pt có tập nghiệm S={-1}