\(A=x_1^2+x_2^2-x_1-x_2\)
\(A=\left(x_1+x_2\right)^2-\left(x_1+x_2\right)-2x_1x_2\)
\(A=\left(x_1+x_2\right)\left(x_1+x_2-1\right)-2x_1x_2\)(1)
\(\Delta_x=\left(m+1\right)^2+4m=m^2+6m+1\)
\(\Delta_m=9-1=8\)
\(\Delta_x\ge0\Rightarrow\left[{}\begin{matrix}m\le-3-2\sqrt{2}\\m\ge-3+2\sqrt{2}\end{matrix}\right.\) (2)
với đk (2) \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-4m\end{matrix}\right.\)(3)
(1);(3)<=>\(A=2\left(m+1\right)\left[2\left(m+1\right)-1\right]-2.\left(-4m\right)\)
\(A=6=\left(m+1\right)\left[2\left(m+1\right)-1\right]-\left(-4m\right)=3\)
\(A=\left(m+1\right)\left[2m+1\right]+4m=3\)
\(A=2m^2+7m-2=0\)
\(\left[{}\begin{matrix}m=\dfrac{-7+-\sqrt{65}}{4}\\\end{matrix}\right.\) so sánh đk m =(-7+can65)/4