Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1^4+x_2^4=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2=727\\y_1y_2=x_1^4x_2^4=1\end{matrix}\right.\)
Phương trình cần tìm có dạng \(ax^2+bx+c=0\left(1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{a}=727\\\dfrac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=-727a\\c=a\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow ax^2-727ax+a=0\)
\(\Leftrightarrow x^2-727x+1=0\)