Bài 7. Lập phương của một tổng. Lập phương của một hiệu

H24

Với hai số a, b bất kì, thực hiện phép tính

\(\left( {a + b} \right){\left( {a + b} \right)^2}\)

Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^3}\) và \({a^3} + 3{a^2}b + 3a{b^2} + {b^3}\).  

HM
12 tháng 1 2024 lúc 21:24

\(\begin{array}{l}\left( {a + b} \right){\left( {a + b} \right)^2} = \left( {a + b} \right).\left( {{a^2} + 2ab + {b^2}} \right) = a.{a^2} + a.2ab + a.{b^2} + b.{a^2} + b.2ab + b.{b^2}\\ = {a^3} + 2{a^2}b + a{b^2} + {a^2}b + 2a{b^2} + {b^3}\\ = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\end{array}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết