Violympic toán 9

HT

Với \(a\ge b\ge c\ge0\). CMR \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

DH
29 tháng 11 2019 lúc 8:48

Theo giả thiết ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{a}-\frac{c}{b}-\frac{a}{c}\)

\(=\frac{a^2c+b^2a+bc^2-b^2c-c^2a-a^2b}{abc}\)

\(=\frac{c\left(a^2-b^2\right)+ab\left(b-a\right)+c^2\left(b-a\right)}{abc}\)

\(=\frac{c\left(a-b\right)\left(a+b\right)-ab\left(a-b\right)-c^2\left(a-b\right)}{abc}\)

\(=\frac{\left(a-b\right)\left(ca+cb-ab-c^2\right)}{abc}\)

\(=\frac{\left(a-b\right)\left[a\left(c-b\right)+c\left(b-c\right)\right]}{abc}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\le0\)

\(a\ge b\ge c\ge0\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\le\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

Bạn xem lại đề nhé!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NO
Xem chi tiết
BH
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
NO
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NO
Xem chi tiết