Ta có : \(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\dfrac{1}{4}.\dfrac{4}{a+b}=\dfrac{1}{a+b}\) ( đpcm )
Dấu \("="\) xảy ra khi \(a=b\)
\(bđt\Leftrightarrow\dfrac{1}{a+b}\le\dfrac{a+b}{4ab}\)
\(\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\left(luôn-đúng\right)\)
\("="\Leftrightarrow a=b\)