Violympic toán 9

TT

Với a, b, c là 3 số dương cho \(x=\dfrac{1}{\sqrt{b}+\sqrt{c}},y=\dfrac{1}{\sqrt{a}+\sqrt{c}},z=\dfrac{1}{\sqrt{b}+\sqrt{a}}\). Chứng minh rằng nếu 2b=a+c thì 2y=x+z.

AH
17 tháng 2 2018 lúc 1:21

Lời giải:

Ta có \(x=\frac{1}{\sqrt{b}+\sqrt{c}}; y=\frac{1}{\sqrt{a}+\sqrt{c}}; z=\frac{1}{\sqrt{b}+\sqrt{a}}\)

\(\Rightarrow \left\{\begin{matrix} \sqrt{b}+\sqrt{c}=\frac{1}{x}\\ \sqrt{c}+\sqrt{a}=\frac{1}{y}\\ \sqrt{b}+\sqrt{a}=\frac{1}{z}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} \sqrt{a}=\frac{1}{2}(\frac{1}{y}+\frac{1}{z}-\frac{1}{x})\\ \sqrt{b}=\frac{1}{2}(\frac{1}{x}+\frac{1}{z}-\frac{1}{y})\\ \sqrt{c}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}-\frac{1}{z})\end{matrix}\right.\)

Khi đó: \(2b=a+c\)

\(\Leftrightarrow \frac{1}{2}(\frac{1}{x}+\frac{1}{z}-\frac{1}{y})^2=\frac{1}{4}(\frac{1}{y}+\frac{1}{z}-\frac{1}{x})^2+\frac{1}{4}(\frac{1}{x}+\frac{1}{y}-\frac{1}{z})^2\)

\(\Leftrightarrow \frac{1}{xz}-\frac{1}{xy}-\frac{1}{yz}=\frac{1}{2yz}-\frac{1}{2xz}-\frac{1}{2xy}+\frac{1}{2xy}-\frac{1}{2yz}-\frac{1}{2xz}\)

\(\Leftrightarrow \frac{1}{xz}-\frac{1}{xy}-\frac{1}{yz}=\frac{-1}{xz}\)

\(\Leftrightarrow \frac{2}{xz}=\frac{1}{xy}+\frac{1}{yz}\)

\(\Leftrightarrow 2y=z+x\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
TT
Xem chi tiết
HC
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
VD
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
HC
Xem chi tiết