Violympic toán 9

AR

với 3 số dương x, y, z thỏa mãn x+y+z=1. CM 1-x^2/x+yz+1-y^2/y+xz+1-z^2/z+xy>=6

NL
25 tháng 10 2019 lúc 9:44

\(P=\sum\frac{1-x^2}{x+yz}=\sum\frac{1-x^2}{x\left(x+y+z\right)+yz}=\sum\frac{\left(1-x\right)\left(x+1\right)}{\left(x+y\right)\left(x+z\right)}\)

\(P\ge\sum\frac{4\left(1-x\right)\left(x+1\right)}{\left(x+x+y+z\right)^2}=\sum\frac{4\left(1-x\right)\left(x+1\right)}{\left(x+1\right)^2}=\sum\frac{4-4x}{x+1}=\sum\left(\frac{8}{x+1}-4\right)\)

\(P\ge\frac{72}{x+y+z+3}-12=6\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DF
Xem chi tiết
TU
Xem chi tiết
NM
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
DL
Xem chi tiết
BB
Xem chi tiết
MD
Xem chi tiết