Chứng minh rằng 3 số hạng đầu của tổng :
\(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}+\dfrac{1}{3-\sqrt{3}}+\dfrac{1}{6}+.....\)
lập thành một cấp số nhân và tính tổng trên với giả thiết rằng các số hạng tiếp theo được tạo thành theo quy luật cấp số nhân đó
Cho dãy số \(\left(u_n\right)\) với \(u_n=3-2n\)
a) Xét tính tăng, giảm của dãy số
b) Chứng minh rằng dãy số trên là cấp số cộng
c) Tính tổng của 100 số hạng đầu của dãy số
ba số -2; x; 10 là ba số hạng liên tiếp của một cấp số cộng .tìm công sai d của cấp số cộng
Cho dãy số \(\left(u_n\right)\) với \(u_n=\left(-1\right)^n\left(-3\right)^{n+1}\)
a) Xét tính tăng, giảm của dãy số
b) Chứng minh rằng dãy số trên là cấp số nhân
c) Hỏi phải lấy tổng của bao nhiêu số hạng đầu của dãy số để được kết quả là : -265716
Tìm số hạng thứ nhất \(a_1\) và công bội q của một cấp số nhân \(\left(a_n\right)\) biết rằng :
\(a_4-a_2=1\dfrac{13}{32}\) và \(a_6-a_4=-\dfrac{45}{512}\)
Tìm cấp số nhân gồm 7 số hạng, biết :
\(\left\{{}\begin{matrix}u_1+u_2+u_3=26\\u_5+u_6+u_7=2106\end{matrix}\right.\)
Cho dãy số (un) xác định như sau: u1= 2; un+1 - un - 2 + 2(4un+1 - \(\sqrt{4u_n+1}\)) = 0, ∀n∈ N*. Tìm số hạng tổng quát un của dãy số trên
Cho dãy số (un), biết u1= 2, un+1= \(\dfrac{2017+u_n}{2019-u_n},n\ge1\) . Xác định công thức số hạng tổng quát un và tìm limun
Xét tính bị chặn của các dãy số với số hạng tổng quát sau :
a) \(x_n=\dfrac{5n^2}{n^2+3}\)
b) \(y_n=\left(-1\right)^n\dfrac{2n}{n+1}\sin n\)
c) \(z_n=n\cos n\pi\)