Chương II - Đường tròn

TN

từ một điểm M nằm ngoài đường tròn O, vẽ 2 tiếp tuyến MA và MB với đường tròn O (A,B là tiếp điểm)

vẽ dây cung AD // MB, MD cắt P tại C (c khác d)

a, cm MAOB nội tiếp

b, ma2 = mc.md

c cm góc adb = góc bcd

d, tia ac cắt mb tại e. chứng minh e là trung điểm của mb

NT

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

nên MAOB là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{MAC}=\widehat{ADC}\)

Xét ΔMAC và ΔMDA có

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó: ΔMAC~ΔMDA

=>\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\)

=>\(MA^2=MD\cdot MC\)

d: Ta có: \(\widehat{CDA}=\widehat{CAM}\)

mà \(\widehat{CDA}=\widehat{CME}\)(hai góc so le trong, DA//EM)

nên \(\widehat{CAM}=\widehat{CME}\)

Xét ΔEAM và ΔEMC có

\(\widehat{EAM}=\widehat{EMC}\)

\(\widehat{AEM}\) chung

Do đó: ΔEAM~ΔEMC

=>\(\dfrac{EA}{EM}=\dfrac{EM}{EC}\)

=>\(EM^2=EA\cdot EC\left(1\right)\)

Xét (O) có

\(\widehat{EBC}\) là góc tạo bởi tiếp tuyến BE và dây cung BC

\(\widehat{CAB}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{EBC}=\widehat{CAB}\)

Xét ΔEBC và ΔEAB có

\(\widehat{EBC}=\widehat{EAB}\)

\(\widehat{AEB}\) chung

Do đó: ΔEBC~ΔEAB

=>\(\dfrac{EB}{EA}=\dfrac{EC}{EB}\)

=>\(EB^2=EA\cdot EC\left(2\right)\)

Từ (1) và (2) suy ra EB=EM

=>E là trung điểm của BM

Bình luận (1)
AH
11 tháng 3 lúc 22:05

MD cắt P là sao bạn nhỉ?

Bình luận (1)