1.
\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa>0\end{matrix}\right.\)
\(1+tan^2a=\dfrac{1}{cos^2a}\Rightarrow cosa=\sqrt{\dfrac{1}{1+tan^2a}}=\dfrac{\sqrt{26}}{26}\)
\(sina=-\sqrt{1-cos^2a}=-\dfrac{5\sqrt{26}}{26}\)
\(sin\left(a-\dfrac{2\pi}{3}\right)=sina.cos\left(\dfrac{2\pi}{3}\right)-cosa.sin\left(\dfrac{2\pi}{3}\right)=\dfrac{-\sqrt{78}-5\sqrt{26}}{52}\)
2.
Đường tròn tiếp xúc trục Ox \(\Rightarrow R=d\left(I;Ox\right)=\left|y_I\right|=2\)
Phương trình: \(\left(x+3\right)^2+\left(y-2\right)^2=4\)
3.
\(\overrightarrow{AB}=\left(1;1\right)\)
CH vuông góc AB nên nhận (1;1) là 1 vtpt
Phương trình CH:
\(1\left(x+1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-3=0\)
N là trung điểm BC \(\Rightarrow N\left(1;2\right)\Rightarrow\overrightarrow{AN}=\left(-1;3\right)\)
\(\Rightarrow\) Đường thẳng AN nhận (3;1) là 1 vtpt
Phương trình AN:
\(3\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow3x+y-5=0\)