Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

MT

Trong mặt phẳng với hệ tọa độ Oxy , cho \(_{\Delta ABC}\) có đường cao AH : 3x-y+8=0 , trung tuyến AM: 3x+y-2=0 biết H,M thuộc đoạn BC , \(\widehat{BAH}=\widehat{MAC}\)  và \(BC=3\sqrt{10}\) .Viết phương trình tổng quát của đường thẳng BC

NL
27 tháng 7 2021 lúc 10:20

Gọi N là trung điểm AB

Trong tam giác vuông ABH, HN là trung tuyến ứng với cạnh huyền

\(\Rightarrow HN=\dfrac{1}{2}AB=AN\Rightarrow\Delta AHN\) cân tại N

\(\Rightarrow\widehat{BAH}=\widehat{AHN}=\widehat{MAC}\) (1)

Trong tam giác ABC, MN là đường trung bình \(\Rightarrow MN||AC\)  (2)

\(\Rightarrow\widehat{NMA}=\widehat{MAC}\) (3)

(1);(3) \(\Rightarrow\widehat{AHN}=\widehat{NMA}\) \(\Rightarrow\) tứ giác AMHN nội tiếp

\(\Rightarrow\widehat{ANM}=\widehat{AHM}=90^0\) (cùng chắn AM) hay \(MN\perp AB\) (4)

(2);(4) \(\Rightarrow AB\perp AC\) hay tam giác ABC vuông tại A

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}3x-y+8=0\\3x+y-2=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)

AM là trung tuyến ứng với cạnh huyền trong tam giác vuông 

\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{3\sqrt{10}}{2}\)

Từ vecto pháp tuyến của AM và AM ta có:

\(cos\widehat{HAM}=\dfrac{\left|3.3-1.1\right|}{\sqrt{3^2+\left(-1\right)^2}.\sqrt{3^2+1^2}}=\dfrac{4}{5}\)

\(\Rightarrow AH=AM.cos\widehat{HAM}=\dfrac{6\sqrt{10}}{5}\)

Do H thuộc AH nên tọa độ có dạng: \(H\left(a;3a+8\right)\Rightarrow\overrightarrow{AH}=\left(a+1;3a+3\right)\)

\(\Rightarrow\left(a+1\right)^2+\left(3a+3\right)^2=\left(\dfrac{6\sqrt{10}}{5}\right)^2\)

\(\Rightarrow\) Giải ra a \(\Rightarrow\) tọa độ H \(\Rightarrow\) phương trình BC qua H và vuông góc AH nên nhận \(\left(1;3\right)\) là 1 vtpt

Bình luận (0)
NL
27 tháng 7 2021 lúc 10:21

undefined

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
PT
Xem chi tiết
HM
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
HV
Xem chi tiết
NX
Xem chi tiết
MT
Xem chi tiết
DN
Xem chi tiết