Violympic toán 9

VH

Trong mặt phẳng toạ độ Oxy, cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=2x+3\)

1) Chứng minh rằng (d) và (P) có hai điểm chung phân biệt.

2) Gọi A và B là các điểm chung của (d) và (P). Tính diện tích tam giác OAB ( O là gốc toạ độ )

AH
23 tháng 5 2018 lúc 18:27

Lời giải:

1)

Xét pt hoành độ giao điểm:

\(x^2-(2x+3)=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow (x-3)(x+1)=0\Leftrightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)

PT hoành độ giao điểm có hai nghiệm pb nên hai đths cũng cắt nhau tại hai điểm phân biệt hay nó có hai điểm chung phân biệt (đpcm)

2)

Không mất tổng quát giả sử \(x_A=3, x_B=-1\)

\(\Rightarrow y_A=9; y_B=1\)

\(\Rightarrow OA=\sqrt{(x_A-0)^2+(y_A-0)^2}=3\sqrt{10}\)

\(OB=\sqrt{(x_B-0)^2+(y_B-0)^2}=\sqrt{2}\)

\(AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}=4\sqrt{5}\)

Áp dụng công thức Herong với $p$ là nửa chu vi, $a=OA, b=OB,c=AB$ thì:

\(S_{OAB}=\sqrt{p(p-a)(p-b)(p-c)}=6\) (đơn vị diện tích)

Bình luận (3)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
NV
Xem chi tiết