Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) : x+y+z-1=0 và hai điểm A(1;-3;0),B(5;-1;-2).Tìm tọa độ điểm M trên mặt phẳng (P) sao cho \(\left|MA-MB\right|\) đạt giá trị lớn nhất.
Trong không gian Oxyz, cho 3 điểm \(A=\left(1;-1;1\right);B=\left(0;1;2\right);C=\left(1;0;1\right)\). Tìm tọa độ trọng tâm G của tam giác ABC ?
Trong không gian Oxyz cho vectơ \(\overrightarrow{a}=\left(1;-3;4\right)\)
a) Tìm \(y_0\) và \(z_0\) để cho vectơ \(\overrightarrow{b}=\left(2;y_0;z_0\right)\) cùng phương với \(\overrightarrow{a}\)
b) Tìm tọa độ của vectơ \(\overrightarrow{c}\) biết rằng \(\overrightarrow{a}\) và \(\overrightarrow{c}\) ngược hướng và \(\left|\overrightarrow{c}\right|=2\left|\overrightarrow{a}\right|\)
Trong không gian Oxyz, cho hình hộp ABCD.A"B'C'D' biết \(A=\left(1;0;1\right);B=\left(2;1;2\right);C=\left(1;-1;1\right);C'\left(4;5;-5\right)\). Tính tọa độ các đỉnh còn lại của hình hộp ?
Trong không gian Oxyz hãy viết phương trình mặt cầu đi qua bốn điểm \(A\left(1;0;0\right);B\left(0;-2;0\right);C\left(0;0;4\right)\) và gốc tọa độ. Hãy xác định tâm và bán kính của mặt cầu đó ?
Trong không gian Oxyz cho tam giác ABC có tọa độ các đỉnh là :
\(A\left(a;0;0\right);B\left(0;b;0\right);C\left(0;0;c\right)\)
Chứng minh rằng tam giác ABC có 3 góc nhọn ?
Trong không gian Oxyz hãy lập phương trình mặt cầu trong các trường hợp sau :
a) Có tâm \(I\left(5;-3;7\right)\) và có bán kính \(r=2\)
b) Có tâm là điểm \(C\left(4;-4;2\right)\) và đi qua gốc tọa độ
c) Đi qua điểm \(M\left(2;-1;-3\right)\) và có tâm \(C\left(3;-2;1\right)\)
Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều 3 điểm \(A\left(1;1;1\right);B\left(-1;1;0\right);C\left(3;1;-1\right)\) ?
Trong không gian Oxyz, cho 3 vectơ \(\overrightarrow{a}=\left(2;-5;3\right);\overrightarrow{b}=\left(0;2;-1\right);\overrightarrow{c}=\left(1;7;2\right)\)
a) Tính tọa độ của vectơ \(\overrightarrow{d}=4\overrightarrow{a}-\dfrac{1}{3}\overrightarrow{b}+3\overrightarrow{c}\)
b) Tính tọa độ của vectơ \(\overrightarrow{e}=\overrightarrow{a}-4\overrightarrow{b}-2\overrightarrow{c}\)