Bài 1. Định lí Thalès trong tam giác

H24

Trong Hình 7, cho AM = 1, MB = 2, AN = 1,5, NC = 3.

a)      So sánh các tỉ số \(\frac{{AM}}{{MB}};\,\,\frac{{AN}}{{NC}}\).

b)     Đường thẳng \(d\) (đi qua M, N) có song song với BC hay không? 

     

HM
11 tháng 1 2024 lúc 21:11

a) \(\frac{{AM}}{{MB}} = \frac{1}{2}\)

\(\frac{{AN}}{{AC}} = \frac{{1,5}}{3} = \frac{1}{2}\)

Vậy \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\).

b) Qua B kẻ đường thẳng song song với đường thẳng d, cắt AC tại C’.

Xét ∆ABC’ với MN // BC’, ta có:

\( \frac{AM}{MB}=\frac{AN}{NC′}\) (định lí Thalès).

Mà theo câu a, \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) nên ta có \(\frac{{AN}}{{NC}} = \frac{AN}{NC′}\)

Suy ra NC = NC’ hay C và C’ là hai điểm trùng nhau.

Do đó C nằm trên đường thẳng đi qua B và song song với đường thẳng d.

Vậy đường thẳng d (đi qua M, N) song song với BC.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết