Bài 6: Ôn tập chương Vecơ trong không gian. Quan hệ vuông góc trong không gian.

SK

Trên mặt phẳng \(\left(\alpha\right)\) cho hình vuông ABCD. Các tia Ax, By, Cz, Dt vuông góc với mặt phẳng \(\left(\alpha\right)\) và nằm về một phía đối với mặt phẳng \(\left(\alpha\right)\) . Một mặt phẳng \(\left(\beta\right)\) lần lượt cắt \(Ax,By,Cz,Dt\) tại A', B', C', D'.

a) Tứ giác A'B'C'D' là hình gì ? Chứng minh rằng AA' + CC'=BB'+DD'

b) Chứng minh rằng điều kiện để tứ giác A'B'C'D' là hình thoi là nó có hai đỉnh đối diện cách đều mặt phẳng \(\left(\alpha\right)\)

c) Chứng minh rằng điều kiện để tứ giác A'B'C'D' là hình chữ nhật là nó có hai đỉnh kề nhau cách đều mặt phẳng \(\left(\alpha\right)\)

NH
26 tháng 5 2017 lúc 10:54

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết