Ôn thi vào 10

NH

Trên đường tròn (O) đường kính AB = 2R (R > 0), lấy một điểm M bất kỳ (khác
A và B). Trên tia AB, lấy một điểm C sao cho AC = 3R, đường thẳng vuông góc với
AB tại C cắt đường thẳng AM tại E.
1. Chứng minh tứ giác BCEM nội tiếp trong một đường tròn.
2. Tính tích AM.AE theo R.
3. Lấy N là một điểm khác A, B, M nằm trên đường tròn (O), đường thẳng AN
cắt đường thẳng CE tại F. Chứng minh tứ giác MNFE nội tiếp trong một đường tròn.

NT
28 tháng 6 2023 lúc 23:02

1: góc AMB=1/2*180=90 độ

=>góc BME=90 độ

góc BCE+góc BME=90+90=180 độ

=>BMEC nội tiếp

2: Xét ΔAMB vuông tại M và ΔACE vuông tại C có

góc A chung

=>ΔAMB đồng dạng với ΔACE

=>AM/AC=AB/AE

=>AM*AE=AB*AC=6R^2

3: góc ANB=1/2*180=90 độ

Xét ΔANB vuông tại N và ΔACF vuông tại C có

góc BAN chung

=>ΔANB đồng dạng với ΔACF

=>AN/AC=AB/AF

=>AN*AF=AB*AC=AM*AE

=>AN/AE=AM/AF

=>ΔANM đồng dạng với ΔAEF

=>góc ANM=góc AEF

=>góc MEF+góc MNF=180 độ

=>MNFE nội tiếp

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
AQ
Xem chi tiết
NN
Xem chi tiết
HV
Xem chi tiết