Cho tam giác ABC có M là TĐ AC, N là TĐ AB, E TĐ BC
a. C/M ABCD là HBH
b. CM A,D,K thẳng hàng
c. Gọi I là giao điểm của AE với BM . C/M diện tích tam giác AIB=1/6 diện tích ABCD
1. Cho tam giác ABC có diện tích bằng 24cm2, đường cao AH bằng 6 cm. Tính BC
2. Cho tam giác ABC vuông cân tại A (AD là phân giác CD thuộc BC), E là điểm đối xứng với D qua AC. Tứ giác AECD là hình gì?
3. Cho tam giác nhọn ABC, các đường cao BH và CK. Gọi E và F lần lượt là hình chiếu của B và C trên HK. Chứng minh rằng EK = HF
Cho tam giác ABC cân tại A , đường cao AH . Biết AB = 5cm; BC = 6cm. a) Tính diện tích ∆ABC . b) Gọi M là trung điểm của AB ; Q là điểm đối xứng với H qua M . Tứ giác AHBQ là hình gì? Vì sao? c) Gọi F là điểm đối xứng với A qua BC ; N là giao điểm của QF và BH . Tính độ dài đoạn thẳng MN . d) Vẽ HK vuông góc với CF tại K ; ∆ABC cần thêm điều kiện gì để ba điểm Q , H , K thẳng hàng? e) Gọi I là trung điểm của HK . Chứng minh FI vuông góc với BK
Cho ΔABC vuông tại A, đường trung tuyến AM. Gọi I là trung điểm của AB và D là điểm đối xứng của M qua I.
a) CMR: AD song2 BM và tứ giác ADBM là hình tho.
b) Gọi E là giao điểm của AM và AD. C/m: AE = EM.
c) Cho BC = 5cm và AC = 4cm. Tính S Δ ABM.
Cho tam giác ABC vuông ở A và có BC = 2 AB = 2a. Ở phía ngoài tam giác, ta vẽ hình vuông BCDE, tam giác đều ABF và tam giác đều ACG
a) Tính các góc B, C cạnh AC và diện tích tam giác ABC
b) Chứng minh rằng FA vuông góc với BE và CG. Tính diện tích các tam giác FAG và FBE
c) Tính diện tích tứ giác DEFG
Bài 2: Cho hình bình hành ABCD có CD = 16 cm, đường cao vẽ từ A đến cạnh CD bằng 12 cm. \
a,Tính diện tích hình bình hành ABCD.
b,Gọi M là trung điểm AB, Tính diện tích tam giác ADM.
c,DM cắt AC tại N. Chứng minh rằng DN= 2NM
d, Tính diện tích tam giác AMN.
Cho tam giác ABD vuông tại A có AB <AD . M là trung điểm của BD . GọiC là điểm đối xứng với A qua M
a, CM tứ giác ABCD là hình chữ nhật
b, Trên tia đối của tia DA lấy E sao cho DE=DA. Gọi I là trung điểm của CD CM: IB=IE
c, gọi AH là đường cao của tam giác ABD và K là điểm đối xứng với A qua H. CM: tứ giác BDCK là hình thang cân
d , chứng minh rằng k,C,E thẳng hàng